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Abstract

As Large Language Models penetrate every-
day life more and more, it becomes essential
to measure the correctness of their output. In
this paper, we propose a novel task: the auto-
matic verification of individual reasoning steps
in a logical deductive Chain-of-Thought. This
task addresses two well-known problems of
LLMs, hallucination and incorrect reasoning.
We propose a new dataset of logical reasoning
chains, in which the individual deduction steps
have been manually annotated for soundness,
and benchmark several methods on it. We find
that LLMs can detect unsound reasoning steps
fairly well, but argue that verification has to
be performed by transparent methods instead.
We test symbolic methods, but find that they
under-perform. We develop a neuro-symbolic
baseline called VANESSA that comes closer to
the performance of LLMs.

The question is how you arrive at your
opinions and not what your opinions are.

– Bertrand Russell

1 Introduction

Large Language Models (LLMs) have worked mir-
acles in natural language processing. Yet they still
have difficulties with logical reasoning (Creswell
et al., 2023; Huang and Chang, 2023; Helwe et al.,
2021): given a text and a question that requires log-
ical reasoning on that text, they may arrive at the
wrong answer. The now commonly used technique
of Chain-of-Thought (CoT) prompting (Wei et al.,
2022) has been shown to improve the reasoning
capabilities of the models. With this technique, the
LLM does not produce a simple answer and possi-
bly explanations, but a reasoning chain, where each
step in the chain consists of premises and a conclu-
sion. Even though these chains make the path from
question to answer more transparent, they still suf-
fer from the same issues: each individual reasoning
step can rest on invalid (hallucinated) premises, or

1. Context and question (given)

If a game is selected in the Top List, it was acclaimed by the critics
or sold 1m units. The game “Legend of Zelda” is in the Top List
and was not acclaimed by the critics. Did “Legend of Zelda” sell 1m
units?

2. Reasoning Chain (produced by a LLM)

Premise 1.1: The game“Legend of Zelda” is in the Top List.
Premise 1.2: If a game is selected in the Top List,

it was acclaimed by the critics or sold 1m units
Conclusion 1: The game “Legend of Zelda” was acclaimed by the critics.

Premise 2.1: The game “Legend of Zelda” was acclaimed by the critics.
Premise 1.2: If a game is acclaimed by the critics, it sold 1m units
Conclusion 2: 1m copies of Legend of Zelda were sold.

Figure 1: Illustration (adapted from Han et al., 2022) of
an incorrect reasoning chain that delivers the correct an-
swer (first red line: invalid conclusion; second red line:
hallucinated premise). Real examples in Appendix D.

be simply logically incorrect. Previous work has
focused nearly exclusively on verifying the final an-
swer of the LLM – not the reasoning chain. This is
problematic because a model may arrive at the cor-
rect answer for the wrong reasons (as in Figure 1).
Indeed, Golovneva et al. (2023) have observed that
even strong LLMs, such as GPT-3, produce a large
amount of unsound reasoning steps. Examples are
in Appendix D.

The question thus arises how we can automati-
cally detect unsound reasoning steps. Previous
work (Ling et al., 2024) has verified reasoning
chains with GPT-3, with mixed results. In this pa-
per, we propose a benchmark of logical deductive
reasoning chains to evaluate such methods system-
atically. We have gathered several major publicly
available logical reasoning datasets: ProofWriter
(Tafjord et al., 2021), ProntoQA (Saparov and He,
2023), FOLIO (Han et al., 2022) and Entailment-
Bank (Dalvi et al., 2021). Where reasoning chains
did not exist, we have produced them ourselves
with different models, and we have manually evalu-
ated each step in each chain by two criteria: validity
(whether the conclusion follows indeed from the



premises) and goundedness (whether each premise
is either mentioned in the text or in the conclusion
of a previous step). This gives us a dataset of 1400
reasoning chains, for a total of more than 5000
annotated steps.

We then proceed to benchmark the perfor-
mance of a variety of state-of-the-art approaches
on the task verifying deductive reasoning chains.
Unsurprisingly, we find that LLM-based methods
perform fairly well. This, however, is of little com-
fort: it can only marginally increase trust in the va-
lidity of a reasoning chain if one black-box model
tells us that the output of another black-box model
is correct. Hence, we set out to study to what
degree symbolic approaches can approximate the
performance of purely neural methods. We find
that existing symbolic methods do not offer the
performance of black-box models.

To explore how far symbolic methods can go,
we develop VANESSA1, a symbolic baseline that
combines syntactic analysis of sentences with a
deductive reasoner. VANESSA has two modes:
In the fully symbolic mode, it achieves low re-
call but very high precision (i.e., it rarely validates
an invalid reasoning step). In the neuro-symbolic
mode, it uses a neural model for Natural Language
Inference (NLI), i.e., to check whether one basic
sentence logically entails another basic sentence.
In contrast to more advanced tasks such as verify-
ing logical steps entirely, or translating text to first
order logic, NLI is a well-studied task, and modern
approaches can solve it rather well on basic sen-
tences. Using such a module allows VANESSA to
perform on par with black-box methods. That said,
the task of verifying deductive reasoning chains
cannot be solved in perfection by any of the meth-
ods that we have studied, and it thus remains an
open and challenging task.

All code and data is available at https://
github.com/dig-team/VANESSA. Our paper is
structured as follows: Section 2 discusses re-
lated work and Section 3 preliminaries; Section 4
presents our benchmark; Section 5 introduces the
approaches we evaluate; Section 6 presents our
neuro-symbolic VANESSA; and Section 7 show-
cases experiments, before Section 8 concludes.

1Verification of Answers by Natural deduction, Entail-
ments, and Syntactic Sentence Analysis

2 Related Work

Deductive Reasoning with Language Models.
RuleTaker (Clark et al., 2021) was the first work
to show that Language Models can perform de-
ductive reasoning on natural language text. Af-
ter that, many reasoning-based question answering
datasets have been proposed, each with different
settings and different types of reasoning (Clark
et al., 2018; Yu et al., 2020; Liu et al., 2020; Yang
et al., 2018; Boratko et al., 2020; Hendrycks et al.,
2021). Recently, the use of LLMs has greatly im-
proved results on these tasks, notably through the
use of Chain-of-Thought prompting (Wei et al.,
2022). Several works aim to further improve their
reasoning through the use of self-reflection and
external tools such as theorem provers (Creswell
et al., 2022; Olausson et al., 2023; Pan et al., 2023;
Lyu et al., 2023). However, all of these works eval-
uate the final answer of the LLM, and not the steps
of the reasoning chain. But LLMs may arrive at
the right answer for the wrong reasons.
Benchmarks of Deductive Reasoning Chains.
ProofWriter (Tafjord et al., 2021) was one of the
earliest datasets of deductive reasoning chains.
However, it contains only sound reasoning chains,
which means that it cannot serve as a benchmark
for models that verify reasoning chains. The
same holds for ProntoQA (Saparov and He, 2023;
Saparov et al., 2023) and EntailmentBank (Dalvi
et al., 2021). In our work, we corrupt some
of the reasoning steps from these datasets to
obtain a balanced benchmark. More recently,
ROSCOE (Golovneva et al., 2023) proposed a
benchmark for reasoning chain evaluation, with
step-level human annotations, which Jacovi et al.
(2024) also did for open-domain question answer-
ing, with a focus on the factuality of statements.
However, their datasets focus on arithmetic, dis-
crete and commonsense reasoning, while we aim
at purely logical deductive reasoning.
Verifying Deductive Reasoning Chains.
ProofWriter (Tafjord et al., 2021) proposed a
system that can validate each reasoning step.
However, this method is restricted to a precise
vocabulary and a limited set of reasoning patterns.
ProntoQA (Saparov and He, 2023; Saparov et al.,
2023) comes with a symbolic method to verify
reasoning steps for their dataset, which parses the
steps to first-order logic and then uses a formal
solver. We use this method in our benchmark.
ReCEval (Prasad et al., 2023), the work of Ling

https://github.com/dig-team/VANESSA
https://github.com/dig-team/VANESSA


et al. (2024), and ROSCOE (Golovneva et al.,
2023) also propose methods to evaluate reasoning
chains. However, these works evaluate the reason-
ing chain as a whole, while our work evaluates
every single step individually. Furthermore, they
explore only the direct use of LLMs for this task,
and not symbolic and neuro-symbolic methods, as
we do. Most similar to ours, Jacovi et al. (2024)
uses LLMs to verify individual steps. However,
they primarily evaluate each statement against
real-world knowledge, rather than the logical
soundness of the steps.

3 Preliminaries

We adopt the formalization of Ling et al. (2024) for
deductive reasoning-based question answering:

Definition. A deductive reasoning-based question
answering task is a tuple (C,Q,O,A) where C is
the context, Q the question, O the set of answer
options and A ∈ O the ground-truth answer. All
information needed to answer the question Q is
present in the context C, and can be used to arrive
at the correct answer A through deductive reason-
ing. Q,C and O are submitted to a model, which
outputs an answer A′.

We consider only the answer options Yes/No/Uncer-
tain, considering that any multiple-choice question
can formulated this way.

Definition. A reasoning chain for a reasoning-
based question answering task is a sequence of
intermediate reasoning steps S = (s1, s2, . . . , sm),
where each reasoning step consists of one or more
premises and a conclusion (si = (p1i , . . . , p

n
i , ci))

and the final conclusion cm is the answer A′ of the
model.

We are interested in verifying (1) the validity
and (2) the groundedness of each step in a rea-
soning chain. A reasoning step is deductively
valid if the conclusion follows logically from the
premises (Ling et al., 2024). More formally, step
si is valid if

p1i , . . . , p
n
i ⊢ ci

A premise of a reasoning step is grounded if it
comes from the context or from a previous con-
clusion. A reasoning step is grounded if all of its
premises are grounded, i.e., step si is grounded if

∀j : pji ∈ (C ∪ {ck}k<i)

When a step is not grounded, it means that the
model hallucinated and “invented” premises. A

step that is both grounded and valid is sound. A
deductive reasoning chain is sound (correct in the
sense of Golovneva et al., 2023; Prasad et al., 2023;
Ling et al., 2024) if all of its steps are sound.

4 Benchmark Creation

Our goal is to create a dataset of deductive reason-
ing chains whose steps are annotated for grounded-
ness and validity. We build it from the following
reasoning-based question answering sources:
ProofWriter (Tafjord et al., 2021) is a question an-
swering dataset that contains proofs with intermedi-
ate steps. This dataset was generated synthetically
using small ontologies, and hence contains short
and simple sentences with a limited vocabulary,
and reasoning patterns needed to deduce the answer
rely mainly on Modus Ponens (A, A ⇒ B ⊢ B).
We used 150 instances from the Depth 5, Open
World Assumption development set for our dataset.
Since all reasoning chains are sound in the original
dataset, we introduce three possible perturbations
corresponding to errors actually made by LLMs:
The first, Negate, negates a premise or conclusion
by adding a “not” (simulating misinformation and
incorrect deductions). The second, Hallucination,
replaces a premise or the conclusion by a sentence
that is irrelevant to the problem (simulating inven-
tion). The third, Remove, deletes a premise (simu-
lating a conclusion without enough support). All
permutations affect validity, and the first two also
affect groundedness when applied to a premise.
ProntoQA (Saparov and He, 2023) is also a log-
ical question answering dataset of contexts with
intermediate reasoning steps. It was also generated
using hierarchical ontologies, but uses more diverse
and complex reasoning patterns than ProofWriter.
We used the 50 first instances of the 4-hop Com-
posed Random set from ProntoQA-OOD (Saparov
et al., 2023), which has the particularity of using
fictional words (e.g. “zumpuses”). Similarly to the
original paper, we generated chains-of-thought for
this dataset using several Large Language Models
(Mixtral 8x7B, LLaMa2-70B, LLaMa3-80B). We
then manually annotated the validity and ground-
edness of each step in these chains.
FOLIO (Han et al., 2022) is a reasoning-based
question answering dataset containing a wide array
of problems and reasoning patterns, based on first-
order-logic. While the previous two datasets are
restricted in terms of lexical and syntactic variety,
FOLIO contains sentences with a large variation



Dataset Chains-of- Instances Steps Average Average Correct Valid Grounded
thought steps premises answers steps steps

ProofWriter Given+Negate 149 754 5.06 2.49 100% 53% ,68%
ProofWriter Given+Remove 149 754 5.06 1.99 100% 49% 100%
ProofWriter Given+Hallucination 149 754 5.06 2.49 81% 48% 76%

ProntoQA By Mixtral 50 93 1.86 3.75 58% 69% 59%
ProntoQA By LLaMa2 50 204 4.08 2.74 80% 41% 89%
ProntoQA By LLaMa3 50 141 2.82 2.03 78% 70% 96%

FOLIO By Mixtral 204 455 2.23 2.79 55% 60% 73%
FOLIO By LLaMa2 204 653 3.20 1.91 64% 51% 84%
FOLIO By LLaMa3 204 606 2.97 1.98 72% 67% 88%

EntailmentBank Given+Negation 100 393 3.93 2.02 100% 47% 83%
EntailmentBank Given+Hallucination 100 387 3.87 2.06 100% 52% 81%

Table 1: Our reasoning chain verification benchmark. There are 1409 instances with 5194 steps in total.

in formulations, words, and entities. It is based
on real-life instances and examples. FOLIO does
not provide any reasoning chains, and hence we
generated chains for its development set with the
same models we used for ProntoQA, and annotated
these manually.
Finally, EntailmentBank (Dalvi et al., 2021) is a
deductive reasoning dataset where the deductions
rely on Natural Language Inference. It provides
reasoning trees, which we convert to linear reason-
ing chains. Similarly to ProofWriter, all original
steps are grounded and valid. Prasad et al. (2023)
proposed a method to generate perturbations for
EntailmentBank, but their perturbations affect only
one intermediate conclusion in the whole chain
(i.e., only validity). To evaluate both groundedness
and validity, we apply Negation and Hallucination
perturbations in the same way as for ProofWriter.
Annotations were performed by the authors, with
the instruction of annotating whether the conclu-
sion can be logically deduced from the informa-
tion contained in the premises (for validity), and
whether each premise appeared previously (for
groundedness). Inter-annotator agreement was
98.6%. Table 1 shows the statistics of our bench-
mark. The Correct Answers column corresponds
to the accuracy of the final answer on the QA task,
while Valid and Grounded Steps indicate the pro-
portion of steps that were annotated as valid and
grounded, respectively. In general, LLaMa models
generate deeper reasoning chains (containing more
steps) than Mixtral, indicating a better ability to
decompose their reasoning. This is also shown by
the fact that Mixtral-generated reasoning steps con-
tain more premises on average, which often means
that some premises are not useful or that the step
is very complex and could be further decomposed.

The same goes for groundedness, where Mixtral
lags behind the LLaMa models. Both Mixtral and
LLaMa3 generate more valid reasoning steps than
LLaMa2, suggesting that LLMs get better at rea-
soning over time. Overall, our benchmark contains
a wide array of both synthetic and real data, and of
grounded and ungrounded, valid and invalid, and
complex and simple reasoning chains.

5 Methods

We evaluate different methods for the detection of
unsound reasoning chains, which rely on LLMs to
different extents.
NLI. As proposed by ReCEval (Prasad et al., 2023),
the validity of a reasoning step can be verified by
NLI: if the premises entail the conclusion, then the
step is considered valid. We adapt this technique
to verify also groundedness: if each premise is
entailed by a sentence from the context or from
a previous conclusion, the step is grounded. A
variant of this scheme (which we call Full Context)
asks whether the premise is entailed from the entire
context, concatenated with all previous conclusions.
We used three models for NLI: a state-of-the-art
DeBERTa model fine-tuned for NLI (Laurer et al.,
2024), a LLaMa3-8B-Instruct model instructed and
few-shot prompted for the task, and GPT 3.5-Turbo.
The latter generally performs worse than LLaMa3,
and the results are in Appendix F. The prompt for
the NLI task is in Appendix C.2.
First-Order Logic Transformation. Another way
to verify a reasoning chain is to transform each step
to first-order logic by help of a LLM, and then ver-
ify the conclusion using a formal theorem prover
(Olausson et al., 2023; Pan et al., 2023). This
method makes the reasoning part of the verification



The game "Legend of Zelda'' was acclaimed
by the critics.

If a game is acclaimed by the critics, it sold
1m units

1m copies of Legend of Zelda were sold.

Logic Verification

⇒

D: "Legend of Zelda"
sold 1m units.

B: "Legend of
Zelda" is a game.

∧

C: "Legend of Zelda" is
acclaimed by the critics.

A ▷ B
A ▷ C
D ▷ E

A: The game "Legend of
Zelda'' was acclaimed by

the critics.

E: 1m copies of
Legend of Zelda

were sold.

Γ ⊢ (B∧C)⇒D
Γ ⊢A ▷ C

Γ ⊢ B∧CΓ ⊢ D

Γ ⊢ D ▷ E
Γ ⊢ E

Logic Transformation

Natural Language 
Inference

Γ ⊢ A
Γ ⊢C

Γ ⊢A ▷ B

Γ ⊢ A
Γ ⊢B

Figure 2: The VANESSA baseline for the (valid) step from Figure 1. We write A ▷ B for A entails B.

trustworthy and reliable, and reduces the task of the
LLM from complete verification to first-order logic
transformation. Groundedness can also be verified
with a similar adaptation to that of NLI: when we
want to verify the groundedness of a premise, we
create a step with the examined premise as the con-
clusion, and a sentence from the previous context
as premise. We use the LINC framework (Olaus-
son et al., 2023) for our experiments. The original
paper used GPT 3.5-turbo in its experiments, which
we replaced with LLaMa3-8B-Instruct. The latter
performs not only equivalently (see our ablation
study in Appendix G), but is also lighter and easier
to reproduce (and finance).
Fully Symbolic. ProntoQA (Saparov and He,
2023; Saparov et al., 2023) is a fully symbolic
method to verify the soundness of a reasoning step,
which parses the steps to first-order logic and then
uses a formal solver. We also evaluate a naive base-
line that assumes that every step in the chain is
sound if the final answer is correct. We add another
symbolic baseline, which says that a premise is
grounded if it appears verbatim in the context or a
previous conclusion.
VANESSA. To test how far symbolic or neuro-
symbolic approaches can go, we develop a neuro-
symbolic baseline, VANESSA. It also transforms
the input to first-order logic and applies a reasoner.
However, instead of using a LLM to transform
sentences to first-order logic, it relies on a pattern-
based transformation, and performs NLI between
pairs of basic sentences.

6 VANESSA

Natural language exhibits variations: a step can be
valid even if the conclusion is phrased differently

from how it appears in the premises. In our exam-
ple in Figure 1, Premise 1.2’ states “If a game is
selected into the Top List”, while the conclusion
is “LoZ is in the Top List”. Purely symbolic meth-
ods have difficulties dealing with such variations.
Purely neural methods, in contrast, are limited in
their transparency. Hence, we set out to design
VANESSA, a neuro-symbolic baseline that is more
resilient to phrase variations. VANESSA translates
the context and the reasoning steps to a logical
form, and then uses a deductive solver. Our key
idea is that, different from other solver-based meth-
ods, VANESSA does not convert a statement to
a predicate with arguments. Rather, it keeps the
statements as atomic literals, and reasons on them
by NLI. In this way, VANESSA is more robust to
phrase variations.

6.1 Transformation to Logic
We want to transform a given text (the con-
text or a reasoning step) into a logical formula.
To this end, we first apply co-reference reso-
lution (with LingMess Otmazgin et al., 2023)
to eliminate pronouns. We then transform ev-
ery sentence into a logical form. We target the
logical operators ∨,∧,⇒,∀, as well as the ex-
clusive disjunction ⊕. We first parse the sen-
tence with a constituency parser (Kitaev et al.,
2019), a well-established task with near-perfect
performance. Then, we apply manually designed
tree regular expressions (adapted from Graphene
by Niklaus et al., 2016) recursively to transform
the tree. For example, “Alex plays football and eats
pasta” is transformed into Alex_plays_football
∧ Alex_eats_pasta. Quantifiers such as “every-
one” give rise to variables, i.e., “Everyone likes



pasta” becomes ∀x :x_likes_pasta. We give the
full list of tree patterns in Appendix A. In the case
of “neither”/“nor”, we negate the sentence parts
with the rule-based tool of Anschütz et al. (2023).
Finally, we eliminate all variables by instantiating
them with all definite noun phrases from the input
(i.e., the context or the reasoning step), creating
one copy of the step per instantiation.

Note that our literals are atomic, and have
no deeper syntactic structure: We produce
Alex_plays_football and not plays(Alex,
football). The meaning of these atomic literals is
exploited by the help of natural language inference,
as follows: we apply an NLI model to pairs of sen-
tences from the premises and the conclusion (cho-
sen as described in Appendix B). If the NLI outputs
an entailment between A and B, we add A ⇒ B
to our set of formulas (and A ⇒ ¬B if it outputs
a contradiction). For example, if our input step
contains also Alex_does_sports, we would add
Alex_plays_football ⇒ Alex_does_sports.
In this way, we completely bypass the need for
a deep syntactic analysis of individual statements.

6.2 Natural Deduction
For a given reasoning step, we want to verify if
the conclusion follows logically from the formulas
given by the context, the premises, and the entail-
ments. This is no easy feat. Two phenomena from
classical logic in particular can be problematic in
our context: material implication and the principle
of explosion. Material implication is the equiva-
lence (A ⇒ B) ⇔ (¬A∨B). Such an equivalence
does not correspond well to the “if... then...” state-
ments in natural language. For instance, for any
true fact B, A ⇒ B will hold regardless of A, al-
lowing deductions such as “If all pigs can fly, then
the Earth revolves around the Sun”. The principle
of explosion is the idea that anything can be de-
duced from a contradiction: A,¬A ⊢ B (for any
A, B) – which does not correspond well to natural
language semantics.

We avoid these phenomena by using Natural
Deduction (Gentzen, 1935). This framework al-
lows us to selectively modify the rules of reasoning.
The complete set of rules we use is shown in Fig-
ure 3. We take inspiration from Church’s weak de-
duction theorem (Batens, 1987): in order to prove
Γ ⊢ A ⇒ B, we shall prove that Γ, A ⊢ B and
Γ ̸⊢ B. We implement this idea by adding “non-
optional” premises in two rules (indicated in red

in the figure). In these rules, the presence of non-
optional premises means that at least one of these
must be essential to the proof. The first of these
rules can be read as: Γ ⊢ A ⇒ B can be deduced
if Γ, A ⊢ B and Γ ̸⊢ B. This condition avoids the
deduction of arbitrary implications from true facts.
If it is not present, then from any Γ ̸⊢ B, one could
write Γ, A ⊢ B and thus deduce Γ ⊢ A ⇒ B.
The second rule with non-optional premises can be
read as: Γ ⊢ ¬A can be deduced if Γ, A ⊢ B and
Γ, A ⊢ ¬B, and Γ ̸⊢ B or Γ ̸⊢ ¬B. This condition
prevents the principle of explosion: in its absence,
from a contradiction Γ ⊢ B and Γ ⊢ ¬B, one
can immediately write Γ, A ⊢ B and Γ, A ⊢ ¬B
regardless of A, and thus deduce Γ ⊢ ¬A.

These rules are a restriction of standard natural
deduction, and since standard natural deduction is
sound and complete, we have:
Proposition. Our natural deduction with the rules
from Figure 3 is not complete, but sound.

Γ ⊢ A ∧B (F.)
Γ ⊢ A

Γ ⊢ A (B.)
Γ ⊢ A ∨B

Γ ⊢ A Γ ⊢ B (B.)
Γ ⊢ A ∧B

Γ ⊢ A ∨B Γ, A ⊢ C Γ, B ⊢ C
(B.F.)

Γ ⊢ C

Γ ⊢ A ∨B Γ ⊢ ¬A (F.)
Γ ⊢ B

Γ ⊢ A ⇒ B Γ ⊢ A (F + B.F.)
Γ ⊢ B

Γ, A ⊢ B
(B.F.)

Γ ⊢ A ⇒ B

Γ, A ⊢ B Γ, A ⊢ ¬B
(F.B.)

Γ ⊢ ¬A

Figure 3: Set of rules used for Natural Deduction, with
“F” indicating forward rules and “B” indicating back-
ward rules. Non-optional premises are shown in red.

To apply the rules efficiently, we built a Natural
Deduction Solver (Gentzen, 1935) that performs a
bidirectional search (Pollock, 1999) (Algorithm 1).
It starts from known facts (the premises) and aims
to reach an objective (the conclusion). At every
step, rules can be applied to deduce new facts from
known facts (forward), or from one objective to
induce other objectives (backward). More complex



rules instantiate new objectives based on known
facts (backward-forward) and objectives (forward-
backward).

Algorithm 1 Our Natural Deduction Algorithm
Input: premises, entailments, conclusion
interests← [conclusion]
facts← premises + entailments
prioQueue← facts + interests
interestLinks← []
while conclusion /∈ facts and prioQueue ̸= ∅ do

current← prioQueue.pop()
if type(current) = Fact then

for interestLink ∈ interestLinks do
if facts.discharge(interestLink) then

newFact← instantiate(interestLink, facts)
prioQueue← newFact

end if
end for
newFacts← [f(fact) for f ∈ forwardRules]
prioQueue += newFacts
type(current)← FBFact
prioQueue += current
if type(current.fact) = Implies then

newInterest← Interest(current.left)
interests += newInterest
prioQueue += newInterest

end if
else

if type(current) = Interest then
newInterests, newInterestLinks ← [b(interest)

for b ∈ backwardRules]
type(current)← BFInterest
prioQueue += current

else if type(current) = BFInterest then
newInterests, newInterestLinks ← [b(interest)

for b ∈ backwardForwardRules]
else if type(current) = FBFact then

newInterests, newInterestLinks ← [b(interest)
for b ∈ forwardBackwardRules]

end if
for newInterestLink ∈ newInterestLinks do

if facts.discharge(interestLink) then
newFact← instantiate(interestLink, facts)
prioQueue += newFact

else
interestLinks += newInterestLink

end if
end for
for newInterest ∈ newInterests do

prioQueue += newInterest
end for

end if
end while
return conclusion ∈ facts

Transparency. When VANESSA approves of a
reasoning step, it can give a fully symbolic proof
(Figure 2). It says from where each premise was
deduced (to prove groundedness), and it shows the
proof tree of the natural deduction (to prove va-
lidity). The only black-box remains the Natural
Language Inference between two sentences. Such
an entailment is, however, relatively easy to ver-
ify for a human. In our example, it amounts to

verifying whether “LoZ is selected into the Top
List” entails “LoZ is in the Top List”. If the use
of NLI is not desired, VANESSA can also run in a
fully symbolic mode, where the entailment is per-
formed through string matching, i.e. an entailment
holds iff the two sentences are identical – giving
a completely symbolic proof for the validity and
groundedness of a reasoning step.

7 Experiments

We evaluate all methods from Section 5 on our
benchmark dataset from Section 4. We evaluate
VANESSA with 3 different NLI models (LLama3,
DeBERTa, and Symbolic), as well as with a con-
ventional solver (“CS”) instead of our natural de-
duction solver. If a method gives an error during
execution, we consider that the model deems the
step unsound. We measure precision and recall for
the tasks of identifying valid and grounded reason-
ing steps. Since false positives are more harmful in
these tasks (as they mean greenlighting an unsound
step), we also report the F0.5 metric. For a better
overview of performance on the whole distribution,
we also report Somers’ D (Somers, 1962).
Validity Verification. Our results for step-level
validity verification (Table 2) show that scores gen-
erally decrease as datasets become more complex:
ProofWriter and ProntoQA use synthetic data, and
all methods perform relatively well. FOLIO uses
non-synthetic data and EntailmentBank even uses
phrase variations, so that all methods degrade.

Overall, LINC is the best-performing method.
Yet, interestingly, its error rate is by far the high-
est on the more complex EntailmentBank and FO-
LIO, which shows that translating non-synthetic
sentences to first-order logic works well in syn-
thetic context, but has limits in more real-life sce-
narios. While one can debate whether an LLM
translation to first order logic can be trusted, LINC
is conservative and achieves high precision.

On the other side of the spectrum, direct NLI
methods usually have the highest recall of all meth-
ods, but are among the worst performers in the
other metrics. This means that this method is too
generous with considering steps as valid. However,
it also outperforms all other methods on Entail-
mentBank, which is the dataset designed with NLI
in mind (as its name indicates).

Finally, the symbolic methods generally perform
worse than the neural methods. As expected, the
baseline performs dismal, because a correct answer



Dataset Verification Error Precision Recall F0.5 D
+ CoT Method Rate

Proof- Answer Baseline 0% 0.52±0.02 0.75±0.02 0.55±0.02 -0.04
Writer ProntoQA 0% 0.46±0.03 0.26±0.02 0.4±0.03 -0.09
+ Neg. VANESSA Symbolic 0% 1.0±0.0 1.0±0.0 0.99±0.0 1.0

VANESSA LLaMa3 5% 0.99±0.0 0.93±0.01 0.98±0.01 0.93
VANESSA DeBERTa 18% 0.99±0.0 0.75±0.02 0.93±0.01 0.76
VANESSA L3-CS 0% 0.7±0.02 1.0±0.0 0.74±0.02 0.61
VANESSA DB-CS 0% 0.65±0.02 0.98±0.01 0.7±0.02 0.49
LINC LLaMa3 0% 0.99±0.0 0.83±0.02 0.95±0.01 0.84
NLI LLaMa3 0% 0.95±0.01 0.88±0.02 0.93±0.01 0.83
NLI DeBERTa 0% 0.88±0.03 0.26±0.02 0.6±0.03 0.31

Proof- Answer Baseline 0% 0.5±0.02 0.83±0.02 0.55±0.02 0.04
Writer ProntoQA 0% 0.69±0.03 0.32±0.02 0.56±0.03 0.22
+ Remove VANESSA Symbolic 0% 0.99±0.0 0.99±0.0 0.99±0.0 1.0

VANESSA LLaMa3 5% 0.99±0.0 0.93±0.01 0.98±0.01 0.93
VANESSA DeBERTa 18% 0.99±0.0 0.75±0.02 0.93±0.01 0.76
VANESSA L3-CS 0% 0.62±0.02 0.99±0.0 0.67±0.02 0.51
VANESSA DB-CS 0% 0.66±0.02 0.98±0.01 0.7±0.02 0.56
LINC LLaMa3 5% 0.98±0.01 0.84±0.02 0.95±0.01 0.84
NLI LLaMa3 0% 0.78±0.02 0.87±0.02 0.79±0.02 0.64
NLI DeBERTa 0% 0.65±0.04 0.26±0.02 0.5±0.03 0.16

Proof- Answer Baseline 0% 0.49±0.02 0.69±0.02 0.52±0.02 0.02
Writer ProntoQA 0% 0.52±0.04 0.25±0.02 0.43±0.03 0.04
+ Hallu VANESSA Symbolic 0% 0.91±0.01 0.99±0.0 0.92±0.01 0.91

VANESSA LLaMa3 4% 0.89±0.02 0.93±0.01 0.89±0.01 0.83
VANESSA DeBERTa 21% 0.89±0.02 0.74±0.02 0.85±0.02 0.67
VANESSA L3-CS 0% 0.64±0.02 0.99±0.0 0.68±0.02 0.54
VANESSA DB-CS 0% 0.64±0.02 0.99±0.01 0.69±0.02 0.54
LINC LLaMa3 5% 0.91±0.02 0.82±0.02 0.89±0.02 0.76
NLI LLaMa3 0% 0.75±0.02 0.88±0.02 0.77±0.02 0.62
NLI DeBERTa 0% 0.63±0.04 0.29±0.02 0.51±0.03 0.16

ProntoQA Answer Baseline 0% 0.77±0.06 0.57±0.06 0.71±0.06 0.22
+ Mixtral ProntoQA 0% 0.92±0.04 0.5±0.06 0.77±0.06 0.45

VANESSA Symbolic 1% 0.95±0.02 0.57±0.06 0.82±0.05 0.55
VANESSA LLaMa3 20% 0.9±0.04 0.77±0.05 0.85±0.04 0.6
VANESSA DeBERTa 78% 0.69±0.11 0.16±0.04 0.43±0.09 0.05
VANESSA L3-CS 13% 0.75±0.05 0.77±0.05 0.74±0.05 0.27
VANESSA DB-CS 14% 0.68±0.05 0.82±0.05 0.69±0.05 -0.02
LINC LLaMa3 9% 0.94±0.03 0.85±0.04 0.9±0.03 0.77
NLI LLaMa3 0% 0.76±0.05 0.93±0.03 0.78±0.04 0.43
NLI DeBERTa 0% 0.73±0.07 0.4±0.06 0.62±0.07 0.11

ProntoQA Answer Baseline 0% 0.46±0.04 0.75±0.05 0.5±0.04 0.15
+ LLaMa2 ProntoQA 0% 0.91±0.04 0.54±0.05 0.78±0.05 0.6

VANESSA Symbolic 1% 0.93±0.03 0.61±0.05 0.83±0.04 0.67
VANESSA LLaMa3 11% 0.87±0.04 0.74±0.05 0.82±0.04 0.7
VANESSA DeBERTa 76% 0.46±0.14 0.07±0.03 0.25±0.07 0.02
VANESSA L3-CS 9% 0.55±0.05 0.56±0.05 0.55±0.05 0.25
VANESSA DB-CS 9% 0.38±0.04 0.7±0.05 0.42±0.04 -0.09
LINC LLaMa3 3% 0.86±0.04 0.89±0.03 0.85±0.03 0.81
NLI LLaMa3 0% 0.51±0.04 0.97±0.02 0.56±0.04 0.4
NLI DeBERTa 0% 0.55±0.06 0.48±0.05 0.54±0.05 0.22

ProntoQA Answer Baseline 0% 0.76±0.04 0.89±0.03 0.78±0.03 0.32
+ LLaMa3 ProntoQA 0% 0.94±0.03 0.48±0.05 0.77±0.05 0.44

VANESSA Symbolic 1% 0.97±0.01 0.64±0.05 0.87±0.03 0.59
VANESSA LLaMa3 4% 0.97±0.01 0.92±0.02 0.95±0.02 0.89
VANESSA DeBERTa 85% 0.72±0.12 0.1±0.03 0.33±0.08 0.06
VANESSA L3-CS 0% 0.82±0.04 0.9±0.03 0.82±0.03 0.52
VANESSA DB-CS 0% 0.71±0.04 0.96±0.02 0.74±0.03 0.13
LINC LLaMa3 3% 0.96±0.02 0.97±0.01 0.95±0.02 0.95
NLI LLaMa3 0% 0.74±0.04 0.95±0.02 0.77±0.03 0.33
NLI DeBERTa 0% 0.79±0.06 0.36±0.05 0.63±0.06 0.16

Dataset Verification Error Precision Recall F0.5 D
+ CoT Method Rate

Entailment Baseline Answer 0% 0.47±0.03 0.87±0.02 0.51±0.02 -0.03
Bank ProntoQA 0% 0±0 0.01±0.01 0.04±0.02 0
+ Negation VANESSA Symbolic 0% 0.78±0.11 0.04±0.01 0.18±0.05 0.17

VANESSA LLaMa3 17% 0.76±0.03 0.69±0.03 0.74±0.03 0.51
VANESSA DeBERTa 20% 0.76±0.04 0.43±0.04 0.65±0.04 0.4
VANESSA L3-CS 1% 0.47±0.03 0.76±0.03 0.51±0.03 -0.02
VANESSA DB-CS 0% 0.46±0.03 0.71±0.03 0.49±0.03 -0.02
LINC LLaMa3 45% 0.76±0.05 0.26±0.03 0.55±0.05 0.26
NLI LLaMa3 0% 0.67±0.03 0.99±0.01 0.71±0.03 0.51
NLI DeBERTa 0% 0.77±0.03 0.87±0.02 0.78±0.03 0.61

Entailment Baseline Answer 0% 0.53±0.03 0.82±0.03 0.57±0.03 -0.02
Bank ProntoQA 0% 0±0 0.01±0.0 0.03±0.02 0
+ Hallucin. VANESSA Symbolic 0% 0.73±0.12 0.04±0.01 0.18±0.05 0.13

VANESSA LLaMa3 4% 0.65±0.03 0.75±0.03 0.67±0.03 0.29
VANESSA DeBERTa 3% 0.59±0.04 0.46±0.03 0.56±0.03 0.11
VANESSA L3-CS 0% 0.56±0.03 0.82±0.03 0.6±0.03 0.13
VANESSA DB-CS 0% 0.52±0.03 0.71±0.03 0.55±0.03 -0.02
LINC LLaMa3 46% 0.86±0.04 0.27±0.03 0.6±0.05 0.31
NLI LLaMa3 0% 0.6±0.03 0.98±0.01 0.65±0.02 0.3
NLI DeBERTa 0% 0.74±0.03 0.87±0.02 0.76±0.02 0.5

FOLIO Baseline Answer 0% 0.68±0.03 0.58±0.03 0.66±0.03 0.18
+ Mixtral ProntoQA 0% 0.72±0.09 0.06±0.01 0.25±0.04 0.07

VANESSA Symbolic 0% 0.94±0.03 0.16±0.02 0.47±0.05 0.24
VANESSA LLaMa3 11% 0.79±0.03 0.6±0.03 0.74±0.03 0.37
VANESSA DeBERTa 12% 0.84±0.03 0.52±0.03 0.75±0.03 0.39
VANESSA L3-CS 8% 0.62±0.03 0.7±0.03 0.63±0.02 0.06
VANESSA DB-CS 8% 0.62±0.03 0.66±0.03 0.63±0.03 0.07
LINC LLaMa3 30% 0.83±0.03 0.48±0.03 0.72±0.03 0.35
NLI LLaMa3 0% 0.66±0.02 0.88±0.02 0.69±0.02 0.25
NLI DeBERTa 0% 0.74±0.03 0.59±0.03 0.7±0.03 0.28

FOLIO Baseline Answer 0% 0.53±0.03 0.55±0.03 0.53±0.02 0.02
+ LLaMa2 ProntoQA 0% 0.84±0.07 0.06±0.01 0.25±0.04 0.14

VANESSA Symbolic 0% 0.97±0.02 0.24±0.02 0.6±0.04 0.36
VANESSA LLaMa3 5% 0.74±0.02 0.69±0.03 0.73±0.02 0.44
VANESSA DeBERTa 5% 0.81±0.02 0.6±0.03 0.75±0.02 0.47
VANESSA L3-CS 3% 0.56±0.03 0.59±0.03 0.57±0.02 0.11
VANESSA DB-CS 3% 0.56±0.03 0.51±0.03 0.55±0.03 0.09
LINC LLaMa3 25% 0.85±0.03 0.48±0.03 0.73±0.03 0.43
NLI LLaMa3 0% 0.6±0.02 0.95±0.01 0.65±0.02 0.36
NLI DeBERTa 0% 0.72±0.02 0.69±0.03 0.71±0.02 0.41

FOLIO Baseline Answer 0% 0.72±0.02 0.69±0.02 0.71±0.02 0.12
+ LLaMa3 ProntoQA 0% 0.66±0.04 0.2±0.02 0.45±0.03 -0.01

VANESSA Symbolic 0% 0.97±0.01 0.26±0.02 0.62±0.03 0.31
VANESSA LLaMa3 5% 0.81±0.02 0.64±0.02 0.76±0.02 0.31
VANESSA DeBERTa 9% 0.86±0.02 0.56±0.02 0.77±0.02 0.35
VANESSA L3-CS 1% 0.69±0.02 0.69±0.02 0.69±0.02 0.06
VANESSA DB-CS 1% 0.72±0.02 0.67±0.02 0.71±0.02 0.13
LINC LLaMa3 24% 0.87±0.02 0.55±0.02 0.78±0.02 0.37
NLI LLaMa3 0% 0.74±0.02 0.89±0.02 0.77±0.02 0.31
NLI DeBERTa 0% 0.77±0.02 0.62±0.02 0.73±0.02 0.22

blah
VANESSA-DB-CS: VANESSA with DeBERTa and conventional solver
VANESSA-L3-CS: VANESSA with LLaMa3 and conventional solver.

Table 2: Performance for validity verification with different methods. Best performer on F0.5 and Somers’ D is
highlighted in green, second best in blue, and third best in red. Horizontal lines separate symbolic, neuro-symbolic
and neural methods.

does not mean a correct reasoning. ProntoQA per-
forms well on ProntoQA, but shows weak results
on the other datasets, with low recall, exemplify-
ing the general problem of symbolic approaches.
The symbolic VANESSA has a better performance
on all metrics than ProntoQA, even on the Pron-
toQA dataset, making it the best symbolic method.
However, recall is still limited.

When VANESSA is combined with NLI mod-
els, in contrast, the performance increases so that
the method joins the ranks of the best-performing
black-box models. VANESSA combined with
LLaMa3 is consistently among the three best meth-
ods in F0.5 and Somers’ D over the benchmark, and

its performance does not decrease as much as the
other methods on EntailmentBank. Our Natural De-
duction Solver systematically has better scores than
the conventional one, indicating that it overcomes
issues with material implication and the principle
of explosion that the conventional solver faces.
Groundedness Verification. Overall, all methods
perform better at groundedness (Table 3) than at
validity. As before, the direct NLI methods usually
have high recall but low precision, while LINC
and symbolic methods have lower recall but better
precision. For the direct NLI methods, there is no
clear winner between the sentence-by-sentence and
full context strategies. Overall, the best performing



Dataset Verification Precision Recall F0.5 D
+CoT Method

Proof- Symbolic NLI 1.0±0.0 1.0±0.0 0.99±0.0 1.0
Writer VANESSA Symbolic 1.0±0.0 1.0±0.0 0.99±0.0 1.0
+ Neg. VANESSA LLaMa3 1.0±0.0 1.0±0.0 0.99±0.0 1.0

VANESSA DeBERTa 0.96±0.01 1.0±0.0 0.96±0.01 0.94
LINC LLaMa3 0.99±0.0 0.99±0.0 0.99±0.0 1.00
NLI LLaMa3 0.93±0.01 1.0±0.0 0.94±0.01 0.88
NLI DeBERTa 0.85±0.01 1.0±0.0 0.87±0.01 0.72
NLI LLaMa3 FC 0.95±0.01 1.0±0.0 0.96±0.01 0.92
NLI DeBERTa FC 0.99±0.0 1.0±0.0 0.99±0.0 1.0

Proof- Symbolic NLI 1.0±0.0 1.0±0.0 0.99±0.0 1.0
Writer VANESSA Symbolic 0.99±0.0 1.0±0.0 0.99±0.0 1.0
+ Hallu. VANESSA LLaMa3 0.98±0.01 1.0±0.0 0.98±0.0 0.97

VANESSA DeBERTa 0.98±0.01 1.0±0.0 0.98±0.0 0.97
LINC LLaMa3 0.97±0.01 1.0±0.0 0.98±0.01 0.95
NLI LLaMa3 0.96±0.01 1.0±0.0 0.97±0.01 0.92
NLI DeBERTa 0.97±0.01 1.0±0.0 0.98±0.01 0.95
NLI LLaMa3 FC 0.91±0.01 1.0±0.0 0.92±0.01 0.79
NLI DeBERTa FC 0.97±0.01 1.0±0.0 0.97±0.01 0.94

ProntoQA Symbolic NLI 0.91±0.04 0.34±0.06 0.66±0.08 0.41
+ Mixtral VANESSA Symbolic 0.96±0.02 0.7±0.06 0.86±0.04 0.71

VANESSA LLaMa3 0.89±0.04 0.71±0.06 0.83±0.05 0.64
VANESSA DeBERTa 0.84±0.06 0.44±0.06 0.69±0.07 0.39
LINC LLaMa3 0.91±0.04 0.34±0.06 0.66±0.08 0.41
NLI LLaMa3 0.61±0.05 0.93±0.03 0.65±0.05 0.18
NLI DeBERTa 0.82±0.05 0.78±0.05 0.80±0.05 0.58
NLI LLaMa3 FC 0.68±0.05 0.85±0.05 0.70±0.05 0.33
NLI DeBERTa FC 0.83±0.05 0.64±0.06 0.76±0.05 0.49

ProntoQA Symbolic NLI 0.99±0.01 0.87±0.02 0.95±0.01 0.65
+ LLaMa2 VANESSA Symbolic 0.99±0.01 0.98±0.01 0.98±0.01 0.95

VANESSA LLaMa3 0.98±0.01 0.97±0.01 0.97±0.01 0.90
VANESSA DeBERTa 0.95±0.01 0.9±0.02 0.94±0.02 0.53
LINC LLaMa3 0.99±0.01 0.87±0.02 0.95±0.01 0.65
NLI LLaMa3 0.9±0.02 0.98±0.01 0.91±0.02 0.29
NLI DeBERTa 0.94±0.02 0.98±0.01 0.94±0.01 0.72
NLI LLaMa3 FC 0.93±0.02 0.96±0.01 0.93±0.02 0.55
NLI DeBERTa FC 0.99±0.01 0.94±0.02 0.97±0.01 0.81

ProntoQA Symbolic NLI 0.98±0.01 0.76±0.04 0.92±0.02 0.35
+ LLaMa3 VANESSA Symbolic 0.97±0.01 0.93±0.02 0.95±0.02 0.44

VANESSA LLaMa3 0.99±0.01 0.91±0.02 0.96±0.01 0.59
VANESSA DeBERTa 0.97±0.01 0.83±0.03 0.92±0.02 0.26
LINC LLaMa3 0.98±0.01 0.76±0.04 0.92±0.02 0.35
NLI LLaMa3 0.94±0.02 0.98±0.01 0.94±0.02 -0.02
NLI DeBERTa 0.98±0.01 0.94±0.02 0.96±0.01 0.57
NLI LLaMa3 FC 0.95±0.02 0.96±0.01 0.94±0.02 0.18
NLI DeBERTa FC 0.98±0.01 0.88±0.03 0.95±0.02 0.50

Dataset Verification Precision Recall F0.5 D
+CoT Method

FOLIO Symbolic NLI 1.0±0.0 1.0±0.0 0.99±0.0 1.0
+ Mixtral VANESSA Symbolic 1.0±0.0 1.0±0.0 0.99±0.0 1.0

VANESSA LLaMa3 0.96±0.01 1.0±0.0 0.97±0.01 0.95
VANESSA DeBERTa 0.86±0.01 1.0±0.0 0.88±0.01 0.75
LINC LLaMa3 0.99±0.0 1.0±0.0 0.99±0.0 0.99
NLI LLaMa3 0.93±0.01 1.0±0.0 0.94±0.01 0.88
NLI DeBERTa 0.85±0.01 1.0±0.0 0.87±0.01 0.72
NLI LLaMa3 FC 0.95±0.01 1.0±0.0 0.96±0.01 0.92
NLI DeBERTa FC 0.99±0.0 1.0±0.0 0.99±0.0 1.0

FOLIO Symbolic NLI 0.99±0.0 0.77±0.02 0.93±0.01 0.58
+ LLaMa2 VANESSA Symbolic 1.00±0.0 0.77±0.02 0.94±0.01 0.59

VANESSA LLaMa3 0.94±0.01 0.95±0.01 0.94±0.01 0.66
VANESSA DeBERTa 0.92±0.01 0.97±0.01 0.93±0.01 0.74
LINC LLaMa3 0.99±0.0 0.77±0.02 0.93±0.01 0.58
NLI LLaMa3 0.89±0.01 0.99±0.0 0.91±0.01 0.57
NLI DeBERTa 0.96±0.01 0.96±0.01 0.96±0.01 0.78
NLI LLaMa3 FC 0.9±0.01 0.95±0.01 0.91±0.01 0.46
NLI DeBERTa FC 0.92±0.01 0.97±0.01 0.93±0.01 0.64

FOLIO Symbolic NLI 1.00±0.0 0.88±0.01 0.97±0.01 0.61
+ LLaMa3 VANESSA Symbolic 1.00±0.0 0.9±0.01 0.97±0.01 0.72

VANESSA LLaMa3 0.98±0.01 0.97±0.01 0.98±0.01 0.84
VANESSA DeBERTa 0.99±0.0 0.98±0.01 0.98±0.0 0.91
LINC LLaMa3 1.00±0.0 0.83±0.02 0.95±0.01 0.61
NLI LLaMa3 0.92±0.01 1.00±0.0 0.93±0.01 0.62
NLI DeBERTa 0.98±0.01 0.98±0.01 0.97±0.01 0.83
NLI LLaMa3 FC 0.92±0.01 0.88±0.01 0.91±0.01 0.31
NLI DeBERTa FC 0.95±0.01 0.97±0.01 0.95±0.01 0.66

Entail- Symbolic NLI 0.99±0.0 0.99±0.0 0.99±0.0 1.0
ment VANESSA Symbolic 0.99±0.0 0.99±0.0 0.99±0.0 0.99
Bank VANESSA LLaMa3 0.98±0.01 0.99±0.0 0.97±0.01 0.94
+ Neg. VANESSA DeBERTa 0.99±0.01 0.99±0.0 0.98±0.01 0.96

LINC LLaMa3 0.95±0.01 0.99±0.0 0.96±0.01 0.87
NLI LLaMa3 0.97±0.01 0.99±0.0 0.97±0.01 0.92
NLI DeBERTa 0.98±0.01 0.99±0.0 0.98±0.01 0.95
NLI LLaMa3 FC 0.99±0.01 0.95±0.01 0.97±0.01 0.86
NLI DeBERTa FC 0.99±0.0 0.93±0.01 0.97±0.01 0.83

Entail- Symbolic NLI 0.99±0.0 0.99±0.0 0.99±0.0 1.0
ment VANESSA Symbolic 0.99±0.0 0.99±0.0 0.99±0.0 1.0
Bank VANESSA LLaMa3 0.91±0.01 0.99±0.0 0.92±0.01 0.75
+ Hallu VANESSA DeBERTa 0.91±0.02 0.99±0.0 0.92±0.01 0.72

LINC LLaMa3 0.97±0.01 0.99±0.0 0.97±0.01 0.94
NLI LLaMa3 0.85±0.02 0.99±0.0 0.87±0.02 0.47
NLI DeBERTa 0.89±0.02 0.99±0.0 0.9±0.01 0.65
NLI LLaMa3 FC 0.87±0.02 0.99±0.0 0.89±0.01 0.55
NLI DeBERTa FC 0.83±0.02 0.99±0.0 0.86±0.02 0.35

Table 3: Performance for groundedness verifications with different methods. FC = Full Context. Best performer is
highlighted in green, second best in blue, and third best in red.

method is VANESSA with LLaMa3.
Error Analysis. We manually examined the false
positives for validity on the FOLIO reasoning
chains (Table 8 in Appendix E). For VANESSA,
the most important source of error are faulty en-
tailments, which cause up to 100% of false posi-
tives. Indeed, an incorrect entailment can easily
lead to an invalid conclusion. As an example, the
step “Premise 1: All professional tennis players are
athletes. Premise 2: Djokovic is an athlete. Conclu-
sion: Djokovic is a professional tennis player.” was
deemed valid by VANESSA because of an entail-
ment between Premise 2 and the Conclusion. This
entailment (which doesn’t stand) is likely caused
by the fact that, in the real world, Djokovic is a
professional tennis player, which the LLM might
have learned during training. More examples and
statistics are in Appendix E.

8 Conclusion

We have presented a benchmark for the verifica-
tion of individual reasoning steps in a deductive
chain-of-thought. We find that neural methods per-
form best, but lack transparency, while symbolic
methods struggle with recall.

To mitigate these shortcomings, we have intro-
duced VANESSA, a neuro-symbolic method that
uses a fully symbolic natural deduction solver,
and relies on natural language inference to exploit
sentence semantics. Our experiments show that
VANESSA can rival the performance of neural
methods while being more transparent.

However, in general, verifying reasoning chains
cannot yet be done in perfection, by any approach,
and it thus remains an exciting avenue of research.



9 Limitations

While all methods can verify validity and ground-
edness with varying precision, none of the methods
has a precision of 100% on real-world datasets.
Our work can thus be seen only as a benchmarking
of existing methods, and as a call to further im-
prove these methods, and not as an approach that
could certify the soundness of reasoning chains
with the quality that would be needed in high-stake
applications.
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A Transformation Patterns

Following Cetto et al. (2018), we detect tree regular
expression patterns in constituency trees and apply
transformations to the tree. The full list of patterns
is shown in Table 4.

B Pairing Strategies for NLI

After logic transformation and instantiation,
VANESSA uses Natural Language Inference (NLI)
to find relations between atomic statements. As in
Helwe et al. (2022), we write A ▷ B for A entails
B, and A ▶ B for A contradicts B.

Testing all combinations of atomic statements
in a reasoning step would both be computationally
expensive and increase the error chance (as NLI is
not 100% reliable). Another problem that appears
when doing so is that implications can be “shortcut”
by entailments: if we have two premises A ⇒ B
and C, and if the NLI model predicts C ▷ B,
then the solver can prove B without first proving A
(which should not be possible in a rigorous reason-
ing). For these reasons, we designed a strategy for
choosing the statements to pair that avoids these sit-
uations but still covers all interesting cases. To do
so, we divide the statements in one reasoning step
into two sets: left and right, depending on which
side they are of an implication. Statements that ap-
pear in formulas that don’t contain any implication
are considered to be in both left and right sets. We
also make a difference between statements from
the premises and those from the conclusion. We
then run NLI on all elements from specific pairs
of categories and keep the predictions that are in-
teresting based on the pairing. To illustrate this,
let us take a case where the premises are A ⇒ B
and C ⇒ D, and the conclusion is E ⇒ F . Sev-
eral sets of entailments / contradictions could make
the conclusion derive from the premises (we’ll not
consider symmetries):

• E ▷ A and B ▷ C and D ▷ F

• E ▷ A and B ▶ D and ¬C ▷ F (Contrapo-
sition)

• E ▶ B and ¬A ▷ C and D ▷ F

• E ▶ B and ¬A ▶ D (i.e. D ▷ A) and
¬C ▷ F

• ¬F ▷ A and B ▷ C and D ▷ F

• ¬F ▷ A and B ▶ D and ¬C ▷ F

• ¬F ▶ B (i.e. B ▷ F ) and ¬A ▷ C and
D ▷ F

• ¬F ▶ B and B ▶ D and ¬C ▷ F

Based on this, we can determine all the pairs of
statements that we have to perform NLI on:

• Right Premise ▷ Left Premise

• Left Conclusion ▷ Left Premise

• Right Premise ▷ Right Conclusion

• Right Premise ▶ Right Premise

• Left Conclusion ▶ Right Premise

• ¬ Left Premise ▷ Left Premise

• ¬ Right Conclusion ▷ Left Premise

In the last two cases, we need to negate the NLI
premise, in which case we add “It is not true that”
before the sentence.



Coordinate Clauses
ROOT «: ( S < (S ?$.. CC & $.. S))

Create a new node whose label depends on CC ("and", "or", neitherNor", "nor"), with children the original ROOT node where

S is replaced by one of its S children

Non-restrictive relative clauses commencing with a preposition followed by a relative pronoun
ROOT «: (S « (NP <, NP & < (/,/ $+ (SBAR <, (WHPP $+ S & <, IN & <- WHNP) & ?$+ /,/))))

Create a new "AND" node with two children. One is the ROOT node where NP ’s right siblings are removed. The other is

ROOT(S + PP( IN , NP ))

Non-restrictive Relative Clauses commencing with the relative pronoun "where"
ROOT «: (S « (/.*/ < ( NP|PP $+ (/,/ $+ (SBAR <, (WHADVP $+ S & «: WRB) & ?$+ /,/)))))

Create a new "AND" node with two children. One is the ROOT node where NP|PP ’s right siblings are removed. The other is

ROOT(S + PP( IN , NP|PP ))

Non-restrictive Relative Clauses commencing with the relative pronoun "whom"
ROOT «: (S « (NP <, NP & < (/,/ $+ (SBAR <, (WHNP $+ (S <, NP & <- VP) & «: (WP <: whom)) & ?$+ /,/))))

Create a new "AND" node with two children. One is the ROOT node where NP ’s right siblings are removed. The other is

ROOT(S) where NP has been inserted as subject

Non-restrictive Relative Clauses commencing with the relative pronoun "whose"
ROOT «: (S « (NP < ( NP $+ (/,/ $+ (SBAR <, (WHNP $+ S & <, (WP$)) & ?$+ /,/)))))

Create a new "AND" node with two children. One is the ROOT node where NP ’s right siblings are removed. The other is

ROOT(S) where NP +"’s" has been inserted in the subject

Non-restrictive Relative Clauses commencing with the relative pronoun "who/which"
ROOT «: (S « (NP <, NP & < (/,/ $+ (SBAR <, (WHNP $+ S & «: WP|WDT) & ?$+ /,/))))

Create a new "AND" node with two children. One is the ROOT node where NP|PP ’s right siblings are removed. The other is

ROOT(S) where NP has been inserted as subject

Preposed Adverbial Clauses
ROOT «: (S < ( SBAR < (S < (NP $.. VP)) $.. (NP $.. VP)))

Create a new node whose label depends on SBAR (Useful for implications indicated by "if", most often "AND") with two

children. The first one is is ROOT(S). The second is the ROOT node where SBAR and its left siblings are removed

Explicit Universal Quantification
ROOT «: (S « ( NP « marker !$„ RB)) & !» If & !» Universal

markers = {every, everyone, everything, everybody, everywhere, all, each, any, anyone, anything, anybody, anywhere, people}
Create a new node Universal with a unique If child, which has two children itself. The first corresponds to (ROOT("X is" +
NP )). The second is ROOT, where NP is replaced by NNP(/X/). If NP was plural, it gets singularized.

Negative Explicit Universal Quantification
ROOT «: (S « ( NP « marker)) & !» If & !» Universal

markers = {no, nobody, nothing, nowhere}
Create a new node Universal with a unique If child, which has two children itself. The first corresponds to (ROOT("X is" +
NP )). The second is Not(ROOT), where NP is replaced by NNP(/X/). If NP was plural, it gets singularized.

Implicit Universal Quantification with plural subject
ROOT «: (S < ( NP « (NNP|NNPS !» VP) & $.. VP)) & !» If & !» Universal

NP is an indefinite plural NP. VP’s tense is simple present
Create a new node Universal with a unique If child, which has two children itself. The first corresponds to (ROOT("X is" +
NP )). The second is ROOT, where NP is replaced by NNP(/X/). If NP was plural, it gets singularized.



Implicit Universal Quantification with indefinites and be
ROOT «: (S < ( NP $.. (VP « /is/ & < NP ))) & !» If & !» Universal

NP are indefinite singular NP
Create a new node Universal with a unique If child, which has two children itself. The first corresponds to (ROOT("X is" +
NP )). The second is Not(ROOT), where NP is replaced by NNP(/X/).

Explicit Universal Quantification embedded in an implication
ROOT «: (S « ( NP « marker !$„ RB)) & »,1 If & !» Universal

Create a new node Universal whose child is If. Transform its left child to an "AND" node, whose left child corresponds to
(ROOT("X is" + NP )) and right child is ROOT, where NP is replaced by NNP(/X/). Replace occurences of NP in If’s
descendants by NNP(/X/).

Implicit Universal Quantification embedded in an implication
ROOT «: (S « ( NP !» VP)) & »,1 If & !» Universal

NP is an indefinite singulat NP
Create a new node Universal whose child is If. Transform its left child to an "AND" node, whose left child corresponds to
(ROOT("X is" + NP )) and right child is ROOT, where NP is replaced by NNP(/X/). Replace occurences of NP in If’s
descendants by NNP(/X/).

Non-restrictive Preposed Participial Phrases
ROOT «: (S [< ( VP «, (VBG|VBN)) | < ( PP|ADVP <+PP|ADVP (S <: (VP «, VBG|VBN )))] & $.. (NP $.. VP))

Create a new "AND" node with two children. The first one is ROOT with VP ’s parent or PP|ADVP is removed. The second
is a node corresponding to ROOT(NP + "is" + VP)

Coordinate Verb Phrases
ROOT «: (S < ( NP $.. (VP <+(VP) ( VP > (VP ?$.. CC & $.. VP)))))

Create a new node whose label depends on CC ("and", "or", neitherNor", "nor"), with children the original ROOT node where

VP is replaced by one of its VP children

Coordinate Noun Phrase lists in Subject position
ROOT «: (S < ( NP < (NP ?$.. CC & $.. NP) $.. VP ))

Create a new node whose label depends on CC ("and", "or", neitherNor", "nor"), with children the original ROOT node where

NP is replaced by one of its NP children

Coordinate Noun Phrase lists in Object position
ROOT «: ( S < (NP $.. (VP « ( NP < (NP ?$.. CC & $.. NP2)))))

Create a new node whose label depends on CC ("and", "or", neitherNor", "nor"), with children the original ROOT node where

NP is replaced by one of its NP children

Table 4: List of our Transformation Patterns



C Prompts

C.1 Generation Prompt
We generated reasoning chains for the Pron-
toQA and FOLIO datasets using three dif-
ferent models: Mixtral 8x7B, LLaMa2-70B,
and LLaMa3-70B. We used the follow-
ing instruction prompt to obtain the chains.

You will be presented with a passage and a question about
that passage. There are options to be chosen from, only
one of which is the correct answer. You need to write your
step-by-step reasoning and conclude with the answer. One
reasoning step should consist of a set of premises and one
conclusion. The conclusion should be deduced immediately
from the premises. Premises can only be sentences from the
passage or previous conclusions. Follow the format of the
example.

Example Passage: Last night, Mark either went to
play in the gym or visited his teacher Tony. If Mark drove last
night, he didn’t go to play in the gym. Mark would go visit his
teacher Tony only if he and his teacher had an appointment.
In fact, Mark had no appointment with his teacher Tony in
advance.
Example Question: Is it true that Mark drove last night?
Example Options: A. Yes. B. No. C. Uncertain.

Example Reasoning:
Premise 1.1: Mark would go visit his teacher Tony only if he
had an appointment.
Premise 1.2: Mark had no appointment with his teacher Tony.
Conclusion 1: Mark didn’t visit his teacher, Tony.
Premise 2.1: Mark either went to the gym or visited his
teacher Tony.
Premise 2.2: Mark didn’t visit his teacher Tony.
Conclusion 2: Mark went to the gym.
Premise 3.1: If Mark drove last night, he didn’t go to play in
the gym.
Premise 3.2: Mark went to the gym.
Conclusion 3: Mark didn’t drive last night.
Premise 4.1: Mark didn’t drive last night.
Answer: B. No.

Example Passage: David knows Mr. Zhang’s friend
Jack, and Jack knows David’s friend Ms. Lin. Everyone of
them who knows Jack has a master’s degree, and everyone of
them who knows Ms. Lin is from Shanghai.
Example Question: Is it true that David is from Shanghai?
Example Options: A. Yes. B. No. C. Uncertain.

Example Reasoning:
Premise 1.1: David knows Mr. Zhang’s friend Jack, and Jack
knows David’s friend Ms. Lin.
Conclusion 1: David is friend with Ms. Lin.
Premise 2.1: David is friend with Ms. Lin.
Premise 2.2: Everyone of them who knows Jack has a
master’s degree, and everyone of them who knows Ms. Lin is
from Shanghai.
Conclusion 2: David is from Shanghai.
Premise 3.1: David is from Shanghai.
Answer: A. Yes.

C.2 Natural Language Inference Prompt
You are an expert linguistic annotator who performs Natural
Language Inference: You will be presented with a premise
and a hypothesis, and you shall answer whether the premise
is equivalent to or entails the hypothesis (Entailment), contra-
dicts it (Contradiction) or does not give enough information to
conclude (Neutral). Answer "Entailment" or "Contradiction"
only when you’re absolutely confident, and "Neutral" the rest
of the time (or when making assumptions). Answer only with
"Entailment", "Contradiction" or "Neutral", nothing else.
Premise: Ducks quack . Hypothesis: New York is a city .
Answer: Neutral
Premise: X love the Beatles . Hypothesis: X likes the Beatles
.
Answer: Entailment
Premise: It is not true that X loves the Beatles . Hypothesis:
X likes the Beatles .
Answer: Neutral
Premise: It is not true that X lives in France . Hypothesis: X
lives in France .
Answer: Contradiction
Premise: Alice changes often . Hypothesis: Alice change
often .
Answer: Entailment
Premise: It is not true that Jack is happy . Hypothesis: Jack is
unhappy .
Answer: Entailment
Premise: X hates cats . Hypothesis: X is a cat person .
Answer: Contradiction
Premise: David has blonde hair . Hypothesis: David likes
football .
Answer: Neutral
Premise: X are a child . Hypothesis: X is a kid.
Answer: Entailment
Premise: Alex loves fruits . Hypothesis: John hates pears .
Answer: Neutral

D Examples of Reasoning Chains

Tables 5, 6 and 7 show example of reasoning chains
from our benchmark. Premises in red indicate
groundedness issues, and conclusions in red show
that the step is invalid.



Dataset Instance Reasoning Chain

Entailment Bank (Hallu) Context: The milky way is a kind of galaxy. A galaxy
is made of stars. Stars are located light years apart from
each other. Light years ly are an astronomy unit used
for measuring length / distance generally used for values
between 1 and 27000000000.
Question: Is it true that light year can be used to measure
the distance between the stars in milky way?

Premise 1.1: Stars are located light years apart from
each other.
Premise 1.2: Light is a kind of nonliving thing.
Conclusion 1: Light year is used to measure the dis-
tance between stars.
Premise 2.1: The milky way is a kind of galaxy.
Premise 2.2: A galaxy is made of stars.
Conclusion 2: The milky way is made of stars.
Premise 3.1: Light year is used to measure the distance
between stars.
Premise 3.2: The milky way is made of stars.
Conclusion 3: Light year can be used to measure the
distance between the stars in milky way.

Entailment Bank (Neg) Context: Hunting decreases animal populations. De-
creases in an animal population can cause that animal
to be extinct. A sloth is a kind of animal. Hunting is when
a human kills an animal for food / recreation in the wild.
Question: Is it true that that human hunting sloths can
cause sloths to be extinct?

Premise 1.1: hunting decreases animal populations.
Premise 1.2: decreases in an animal population can
cause that animal to be extinct.
Conclusion 1: hunting an animal can cause that animal
to be extinct.
Premise 2.1: hunting an animal can cause that animal
to be extinct.
Premise 2.2: a sloth is a kind of animal.
Conclusion 2: hunting sloths can cause sloths to be
extinct.
Premise 3.1: hunting sloths can cause sloths to be ex-
tinct.
Premise 3.2: a sloth is a kind of animal.
Premise 3.3: hunting is not when a human kills an
animal for food / recreation in the wild.
Conclusion 3: human hunting sloths can cause sloths
to be extinct.

ProofWriter (Neg) Context: Charlie is big. Charlie is cold. Charlie is kind.
Charlie is quiet. Charlie is red. Charlie is rough. Charlie is
smart. Erin is kind. Fiona is quiet. Fiona is rough. Harry
is kind. Harry is rough. Kind things are big. All kind,
smart things are rough. If something is red and quiet then
it is big. All red things are cold. All cold, quiet things are
smart. If something is big and smart then it is cold. All
quiet things are cold. Kind, big things are red. All cold,
smart things are kind.
Question: Is it true that Charlie is red?

Premise 1.1: All cold, quiet things are smart.
Premise 1.2: Charlie is cold.
Premise 1.3: Charlie is quiet.
Conclusion 1: Charlie is smart.
Premise 2.1: All cold, smart things are not kind.
Premise 2.2: Charlie is cold.
Premise 2.3: Charlie is smart.
Conclusion 2: Charlie is kind.
Premise 3.1: Kind, big things are red.
Premise 3.2: Charlie is kind.
Premise 3.3: Charlie is big.
Conclusion 3: Charlie is red.

ProofWriter (Hallu) Context: Bob is kind. Bob is nice. Bob is white. Charlie
is kind. Charlie is white. Erin is red. Erin is rough. Harry
is blue. Harry is kind. Harry is red. Blue people are nice.
All white people are red. If someone is white and blue
then they are nice. All rough people are red. If someone is
smart then they are blue. If someone is kind then they are
red. If someone is nice then they are rough. If someone is
red then they are smart. If someone is red and rough then
they are nice.
Question: Is it true that Harry is smart?

Premise 1.1: If someone is kind then they are red.
Premise 1.2: Harry is kind.
Conclusion 1: Harry is red.
Premise 2.1: If someone is red then they are smart.
Premise 2.2: If something is blue then it chases the
tiger.
Conclusion 2: Harry is smart.

Table 5: Examples of generated reasoning chains for EntailmentBank and ProofWriter



ProofWriter (Remove) Context: The bald eagle is blue. The bald eagle is kind.
The bald eagle likes the cat. The bald eagle does not visit
the tiger. The cat chases the mouse. The cat is green. The
cat likes the bald eagle. The cat likes the mouse. The cat
does not like the tiger. The mouse likes the cat. The tiger
chases the cat. The tiger chases the mouse. The tiger is red.
The tiger likes the cat. The tiger visits the cat. The tiger
visits the mouse. If something likes the bald eagle then it is
blue. If something visits the bald eagle and it visits the cat
then the bald eagle is red. If something chases the mouse
then it visits the cat. If something is blue then it chases
the tiger. If something visits the cat and the cat chases the
tiger then the tiger likes the bald eagle. If something likes
the tiger then the tiger likes the bald eagle. If something
chases the mouse then it visits the mouse.
Question: Is it true that The tiger likes the bald eagle?

Premise 1.1: If something likes the bald eagle then it is
blue.
Premise 1.2: The cat likes the bald eagle.
Conclusion 1: The cat is blue.
Premise 2.1: If something is blue then it chases the
tiger.
Conclusion 2: The cat chases the tiger.
Premise 3.1: If something visits the cat and the cat
chases the tiger then the tiger likes the bald eagle.
Premise 3.2: The tiger visits the cat.
Premise 3.3: The cat chases the tiger.
Conclusion 3: The tiger likes the bald eagle.

ProntoQA (Mixtral) Context: Impuses are lempuses. Every zumpus is a num-
pus. Every gorpus is a sterpus. Every brimpus is a rompus.
Everything that is a grimpus or a vumpus or a tumpus is
a yumpus. Everything that is a tumpus or a wumpus or
a dumpus is a sterpus. Every gorpus is a zumpus and an
impus and a brimpus. Everything that is a grimpus or a
vumpus or a tumpus is a wumpus. Impuses are tumpuses.
Fae is a rompus. Fae is a gorpus.
Question: Is it true that Fae is a yumpus?

Premise 1.1: Fae is a rompus.
Premise 1.2: Fae is a gorpus.
Premise 1.3: Every gorpus is a zumpus and an impus
and a brimpus.
Premise 1.4: Every brimpus is a rompus.
Premise 1.5: Fae is a rompus.
Conclusion 1: Fae is a zumpus and an impus and a
brimpus.
Premise 2.1: Everything that is a grimpus or a vumpus
or a tumpus is a yumpus.
Premise 2.2: Fae is not a grimpus or a vumpus or a
tumpus.
Conclusion 2: Fae is not a yumpus.

ProntoQA (LLaMa2) Context: Every lempus is a numpus. Everything that is a
shumpus or an impus or a dumpus is a numpus. Everything
that is a shumpus or an impus or a dumpus is a brimpus
and a lorpus and a tumpus. Everything that is a numpus
or a tumpus or a vumpus is a sterpus. Everything that is
a dumpus or a zumpus or a jompus is a wumpus. Every
gorpus is a zumpus. Every brimpus is a numpus. Every
lorpus is a vumpus. Max is a jompus and a zumpus and a
wumpus. Max is a gorpus and a dumpus and a lempus.
Question: Is it true that Max is a lempus, a lorpus, or a
tumpus?

Premise 1.1: Every lempus is a numpus.
Premise 1.2: Everything that is a shumpus or an impus
or a dumpus is a numpus.
Conclusion 1: Everything that is a shumpus or an impus
or a dumpus is a lempus.
Premise 2.1: Everything that is a numpus or a tumpus
or a vumpus is a sterpus.
Premise 2.2: Everything that is a dumpus or a zumpus
or a jompus is a wumpus.
Conclusion 2: Everything that is a dumpus or a zumpus
or a jompus is a sterpus.
Premise 3.1: Max is a jompus and a zumpus and a
wumpus.
Premise 3.2: Max is a gorpus and a dumpus and a
lempus.
Conclusion 3: Max is a sterpus.

ProntoQA (LLaMa3) Context: Everything that is a shumpus or a tumpus or
a brimpus is a vumpus. Dumpuses are wumpuses. Ev-
erything that is a wumpus or a brimpus or a gorpus is a
tumpus. Jompuses are sterpuses. Everything that is a wum-
pus or a rompus or a shumpus is a brimpus. Every dumpus
is a gorpus. Everything that is a wumpus or a rompus or a
shumpus is a lorpus and a jompus and a dumpus. Every
lorpus is a zumpus. Sam is a tumpus. Sam is a shumpus.
Question: Is it true that Sam is an impus or a wumpus or
a yumpus?

Premise 1.1: Sam is a tumpus.
Premise 1.2: Everything that is a wumpus or a brimpus
or a gorpus is a tumpus.
Conclusion 1: Sam is a wumpus or a brimpus or a
gorpus.
Premise 2.1: Sam is a shumpus.
Premise 2.2: Everything that is a wumpus or a rompus
or a shumpus is a brimpus.
Conclusion 2: Sam is a brimpus.
Premise 3.1: Sam is a brimpus.
Premise 3.2: Everything that is a shumpus or a tumpus
or a brimpus is a vumpus.
Conclusion 3: Sam is a vumpus.
Premise 4.1: Sam is a wumpus or a brimpus or a gorpus.
Premise 4.2: Dumpuses are wumpuses.
Premise 4.3: Every dumpus is a gorpus.
Conclusion 4: Sam is a wumpus.

Table 6: Examples of generated reasoning chains for ProofWriter and ProntoQA



FOLIO (Mixtral) Context: If George likes music, he wants to compose.
If George has access to a program, he can compose. If
George can compose and wants to compose, he will com-
pose.
Question: Is it true that If George will not compose,
George can not compose?

Premise 1.1: If George likes music, he wants to com-
pose.
Premise 1.2: If George has access to a program, he can
compose.
Premise 1.3: If George can compose and wants to com-
pose, he will compose.
Conclusion 1: George will compose if he likes music,
has access to a program and wants to compose.
Premise 2.1: George will not compose.
Conclusion 2: George doesn’t like music, doesn’t have
access to a program or doesn’t want to compose.
Premise 3.1: George will not compose.
Premise 3.2: George can compose.
Conclusion 3: George doesn’t want to compose.

FOLIO (LLaMa2) Context: All growth companies’ stocks are volatile. If the
stock price is volatile, then it is not suitable for a retirement
fund. Some companies2̆019 stocks are growth companies’
stocks. All mature companies’ stocks are suitable for a
retirement fund. KO is a mature company’s stock.
Question: Is it true that KO is a company stock?

Premise 1.1: All growth companies’ stocks are volatile.
Premise 1.2: If the stock price is volatile, then it is not
suitable for a retirement fund.
Conclusion 1: Growth companies’ stocks are not suit-
able for a retirement fund.
Premise 2.1: Some companies’ stocks are growth com-
panies’ stocks.
Conclusion 2: Some companies’ stocks are not suitable
for a retirement fund.
Premise 3.1: All mature companies’ stocks are suitable
for a retirement fund.
Premise 3.2: KO is a mature company’s stock.
Conclusion 3: KO is suitable for a retirement fund.
Premise 4.1: KO is a company stock.
Conclusion 4: KO is a company stock.

FOLIO (LLaMa3) Context: If people own a large desktop monitor at their
home, then they work regularly and often at home. All
people who have a fully stocked and impressive home
office are people who own a large desktop monitor at their
home. All people who work regularly and often at home
spend their free time tidying and organizing the spaces
in their homes. All people who work regularly and often
at home visit the office supply store regularly. If people
spend their free time tidying and organizing the spaces in
their home, then they do not go to bed late and wake up
every day after noon. Remy either both goes to bed late
and wakes up every day after noon and spends their free
time tidying and organizing the spaces in their home, or
they do not go to bed late and wake up every day after
noon nor spend their free time tidying and organizing the
spaces in their home.
Question: Is it true that Remy visits the office supply store
regularly?

Premise 1.1: Remy either both goes to bed late and
wakes up every day after noon and spends their free
time tidying and organizing the spaces in their home, or
they do not go to bed late and wake up every day after
noon nor spend their free time tidying and organizing
the spaces in their home.
Premise 1.2: If people spend their free time tidying and
organizing the spaces in their home, then they do not go
to bed late and wake up every day after noon.
Conclusion 1: Remy does not spend their free time
tidying and organizing the spaces in their home.
Premise 2.1: All people who work regularly and often
at home spend their free time tidying and organizing the
spaces in their home.
Premise 2.2: Remy does not spend their free time tidy-
ing and organizing the spaces in their home.
Conclusion 2: Remy does not work regularly and often
at home.
Premise 3.1: All people who work regularly and often
at home visit the office supply store regularly.
Premise 3.2: Remy does not work regularly and often
at home.
Conclusion 3: Remy does not visit the office supply
store regularly.

Table 7: Examples of generated reasoning chains for FOLIO



E Error Analysis

We performed a manual error analysis for the false
positives of validity detection on the LLaMa3-
generated Chains-of-Thought on FOLIO for all
methods, with statistics in Table 8. Some of the
errors originate from the Logic Transformation
phase, which was not able to detect splits where
one should have been performed. Yet, the main
source of errors for VANESSA is the NLI module,
which often detects invalid entailments, leading to
incorrect predictions by the model. Even when
parsing is insufficient, there needs to be such a
NLI mistake for a False Positive to be produced
by VANESSA. It is interesting to see that errors
happen particularly when the conclusion is known
to be true in the real-world (e.g. “Djokovic is a
professional tennis player”, or “This statement is
true”), because it shows that the NLI might have ab-
sorbed too much information during training. This
kind of entailment standing is reminiscent of the
problems met with material implication. Table 11
shows examples of false positives.

Validation Method NLI Parsing

VANESSA-Symbolic 0 1
VANESSA-LLaMa3 50 11
VANESSA-Deberta 27 9
LINC-LLaMa3 0 31
NLI-LLaMa3 125 0
NLI-DeBERTa 75 0

Table 8: Main sources of False Positive error on FOLIO-
LLaMa3

F GPT 3.5 for NLI

Results with GPT 3.5-Turbo for validity verifica-
tion are shown in Table 9.

Dataset Method Precision Recall F0.5 D

ProofWriter-Neg NLI LLaMa3 0.95±0.01 0.88±0.02 0.93±0.01 0.83
NLI DeBERTa 0.88±0.03 0.26±0.02 0.6±0.03 0.31
NLI GPT 0.78±0.03 0.49±0.02 0.69±0.02 0.35

ProofWriter-Remove NLI LLaMa3 0.78±0.02 0.87±0.02 0.79±0.02 0.64
NLI DeBERTa 0.65±0.04 0.26±0.02 0.5±0.03 0.16
NLI GPT 0.94±0.02 0.49±0.03 0.79±0.02 0.53

ProofWriter-Hallu NLI LLaMa3 0.75±0.02 0.88±0.02 0.77±0.02 0.62
NLI DeBERTa 0.63±0.04 0.29±0.02 0.51±0.03 0.16
NLI GPT 0.86±0.02 0.5±0.03 0.75±0.02 0.48

ProntoQA-Mixtral NLI LLaMa3 0.76±0.05 0.93±0.03 0.78±0.04 0.43
NLI DeBERTa 0.73±0.07 0.4±0.06 0.62±0.07 0.11
NLI GPT 0.76±0.05 0.82±0.05 0.76±0.04 0.31

ProntoQA-LLaMa2 NLI LLaMa3 0.51±0.04 0.97±0.02 0.56±0.04 0.4
NLI DeBERTa 0.55±0.06 0.48±0.05 0.54±0.05 0.22
NLI GPT 0.58±0.04 0.86±0.04 0.61±0.04 0.45

ProntoQA-LLaMa3 NLI LLaMa3 0.74±0.04 0.95±0.02 0.77±0.03 0.33
NLI DeBERTa 0.79±0.06 0.36±0.05 0.63±0.06 0.16
NLI GPT 0.78±0.04 0.71±0.04 0.75±0.04 0.25

FOLIO-Mixtral NLI LLaMa3 0.66±0.02 0.88±0.02 0.69±0.02 0.25
NLI DeBERTa 0.74±0.03 0.59±0.03 0.7±0.03 0.28
NLI GPT 0.76±0.03 0.77±0.03 0.76±0.02 0.43

FOLIO-LLaMa2 NLI LLaMa3 0.6±0.02 0.95±0.01 0.65±0.02 0.36
NLI DeBERTa 0.72±0.02 0.69±0.03 0.71±0.02 0.41
NLI GPT 0.66±0.02 0.84±0.02 0.69±0.02 0.4

FOLIO-LLaMa3 NLI LLaMa3 0.74±0.02 0.89±0.02 0.77±0.02 0.31
NLI DeBERTa 0.77±0.02 0.62±0.02 0.73±0.02 0.22
NLI GPT 0.71±0.03 0.72±0.03 0.71±0.02 0.07

EntailmentBank-Neg NLI LLaMa3 0.67±0.03 0.99±0.01 0.71±0.03 0.51
NLI DeBERTa 0.77±0.03 0.87±0.02 0.78±0.03 0.61
NLI GPT 0.74±0.03 0.86±0.02 0.76±0.03 0.56

EntailmentBank-Hally NLI LLaMa3 0.6±0.03 0.98±0.01 0.65±0.02 0.3
NLI DeBERTa 0.74±0.03 0.87±0.02 0.76±0.02 0.5
NLI GPT 0.67±0.03 0.87±0.02 0.7±0.03 0.37

Table 9: Validation Results for different NLI models,
including GPT 3.5-Turbo

G Ablation Study - LINC

We experimented with the LINC Framework using
GPT 3.5-Turbo, as in the original paper. Table 10
shows the results we obtained for validation on
ProntoQA and FOLIO. These results encouraged
us to use LLaMa3, which performs similarly (and
is cheaper at that).

Dataset Method Error Rate Precision Recall F0.5 D

Mixtral-ProntoQA LINC LLaMa3 9% 0.94±0.03 0.85±0.04 0.9±0.03 0.77
LINC GPT 2% 0.91±0.03 0.91±0.03 0.89±0.03 0.8

LLaMa-ProntoQA LINC LLaMa3 3% 0.86±0.04 0.89±0.03 0.85±0.03 0.81
LINC GPT 4% 0.87±0.03 0.94±0.02 0.87±0.03 0.87

LLaMa3-ProntoQA LINC LLaMa3 3% 0.96±0.02 0.97±0.01 0.95±0.02 0.95
LINC GPT 3% 0.97±0.01 0.95±0.02 0.95±0.02 0.93

Mixtral-FOLIO LINC LLaMa3 30% 0.83±0.03 0.48±0.03 0.72±0.03 0.35
LINC GPT 32% 0.86±0.03 0.47±0.03 0.73±0.03 0.38

LLaMa-FOLIO LINC LLaMa3 25% 0.85±0.03 0.48±0.03 0.73±0.03 0.43
LINC GPT 24% 0.87±0.02 0.52±0.03 0.76±0.02 0.48

LLaMa3-FOLIO LINC LLaMa3 24% 0.87±0.02 0.55±0.02 0.78±0.02 0.37
LINC GPT 25% 0.89±0.02 0.56±0.02 0.79±0.02 0.4

Table 10: Validation Results for LINC using different
LLMs for the first-order logic conversion



Method Reasoning Step Explanation

VANESSA-Symbolic Premise 3.1: If a design by Max is timeless, then a design
by Max is a mass product design and evocative.
Premise 3.2: (Not applicable, as we don’t know if a design
by Max is timeless)
Conclusion 3: (Not applicable)
Premise 3.1: (A: X is a design by Max ∧ B: X is timeless)
⇒ C: X is a mass product design and evocative
Premise 3.1: D: .
Conclusion 3: E: .
NLI: E ▷ D, D ▷ E

The generated step doesn’t make sense, which is why
it was labeled deemed invalid. The transformation is
weak, with C not being split because of the "and", and
D and E being empty. Yet the NLI module recognizes
that one empty sentence entails an other.

VANESSA-DeBERTa Premise 3.1: An animal is either a monkey or a bird.
Premise 3.2: Rock is not an animal.
Conclusion 3: Rock is neither a monkey nor a bird.
Premise 3.1: G: Rock is an animal ⇒ (H: Rock is a
monkey ⊕ I: Rock is a bird)
Premise 3.2: D: Rock is not an animal
Conclusion 3: E: Rock is not a monkey ∧ F: Rock is not
a bird.
NLI: D ▶ H , D ▶ I , ¬E ▷ G, ¬F ▷ G

The example considers that animals can only be mon-
keys or birds, but does not specify that monkey and
birds are necessarily animals (which is true in the real
life). The NLI’s output is faithful to real life, giving
is for instance that "Rock is not an animal" contradicts
"Rock is a monkey". Modus Tollens is applied, and
VANESSA produces a False Positive.

NLI-DeBERTa Premise 3.1: An animal is either a monkey or a bird.
Premise 3.2: Rock is not an animal.
Conclusion 3: Rock is neither a monkey nor a bird.

Using NLI directly causes the same error as previously,
due to the difference between the problem setup and the
real-life truth that the NLI model has absorbed during
training.

VANESSA-LLaMa3 Premise 4.1: Djokovic is a Grand Slam champion.
Premise 4.2: If a person is a celebrity then they are well
paid.
Premise 4.3: All Oscar-nominated actors are celebrities.
Conclusion 4: Djokovic is well paid.
Premise 4.1: A: Djokovic is a Grand Slam champion
Premise 4.2: (H: Djokovic is a person ∧ I: Djokovic is a
celebrity) ⇒ J: Djokovic are well paid
Premise 4.3: K: Djokovic is an Oscar - nominated actor
⇒ L: Djokovic is a celebrity
Conclusion 4: G:Djokovic is well paid
NLI: A ▷ H , A ▷ I , J ▷ G

This error is due to the NLI model going "too far" with
its conclusions. It predicts that if Djokovic is a Grand
Slam champion, then he must be a celebrity, which is
not necessarily the case.

NLI-LLAMa3 Premise 4.1: Employees will either have lunch in the
company or have lunch at home.
Premise 4.2: James does not work remotely from home.
Conclusion 4: James has lunch in the company.

The NLI model directly entails that if James does not
work remotely from home, then he has lunch in the
company, while it is possible to work on-site but have
lunch at home.

Table 11: Examples of false positives for different methods on FOLIO-LLaMa3


	Introduction
	Related Work
	Preliminaries
	Benchmark Creation
	Methods
	VANESSA
	Transformation to Logic
	Natural Deduction

	Experiments
	Conclusion
	Limitations
	Transformation Patterns
	Pairing Strategies for NLI
	Prompts
	Generation Prompt
	Natural Language Inference Prompt

	Examples of Reasoning Chains
	Error Analysis
	GPT 3.5 for NLI
	Ablation Study - LINC

