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Abstract

Large Language Models can answer natural
language questions with reasoning, but they
remain black boxes. In this paper, we pro-
pose to adapt VANESSA, a method for chain-
of-thought verification, to the task of ques-
tion answering. The result is a fully symbolic
and transparent method for answering natu-
ral language questions with logical deduction.
VANESSA can deliver a formal proof of cor-
rectness of the answer by a logical reasoner.
Our experiments across a variety of datasets
show that this method yields high precision,
but suffers from low recall due to phrasing
differences. The neuro-symbolic variant of
VANESSA, which allows for textual entailment
performed by a black box model, however, is
competitive with the state of the art.

1 Introduction

Reasoning-based question answering is the task of
answering a yes/no question on a paragraph of text
by help of logical deduction. This means that the
answer cannot just be found in the text, but has to
be deduced in one or more logical reasoning steps
from the information given in the text (Figure 1).
This task is of interest not just because it allows
answering complex questions, but also because it
allows gauging whether a QA system goes beyond
surface-level comprehension of the text. Large
Language Models (LLMs) are relatively good at
such reasoning tasks. However, they remain black
boxes: If an LLM says “yes” (or “no”), we have
no guarantee that this answer is correct. The only
way to verify the answer is to compute the answer
ourselves and to compare it to the LLM answer
— which defies the purpose of using an LLM in
the first place. The picture is slightly different
with techniques such as Chain-of-Thought: here,
the model can show its reasoning explicitly step
by step. However, each of these steps might still
be incorrect. Interestingly, the steps can be incor-
rect even if the answer is correct, thus making the
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answer right for the wrong reasons. Indeed, our
previous work' shows that LLMs frequently pro-
duce hallucinations, omissions, or errors in their
reasoning steps.

Our previous work has shown how these rea-
soning steps can be verified in a symbolic manner,
by a method we called VANESSA. For each rea-
soning step in the Chain-of-Thought, VANESSA
parses sentences into a syntax tree, applies a set of
symbolic tree transformations, and verifies the con-
clusion by help of a symbolic logical reasoner. In
a neuro-symbolic variant, VANESSA uses Natural
Language Inference (NLI) to bridge differences in
phrasing.

In this paper, we show that VANESSA can be
adapted to answer the initial question right away,
instead of verifying the reasoning steps produced
by an LLM. For this purpose, VANESSA has to
be adapted to not only prove if the conclusion is
correct, but also to prove that it is incorrect (in
which case the output answer will be “no”). Such
answers are accompanied by a set of transparent
steps that lead from the input text to the answer, and
come with a formal proof of correctness. Figure 1
shows an example. Note how the neuro-symbolic
variant of VANESSA can understand that “Lisa
likes chocolate” entails “Lisa is fond of chocolate”,
and thereby answer the question correctly.

Our experiments on several logical QA bench-
marks and with black box competitors as well as
neuro-symbolic competitors show that (1) the sym-
bolic VANESSA consistently has the highest pre-
cision across all datasets and competitors when it
finds a proof and (2) in its neuro-symbolic variant,
VANESSA is competitive in overall performance
with purely neural methods, while at the same time
delivering a formal proof tree.

!This previous work has been submitted to the ACL
Rolling Review December 2024 Cycle, where it has received
a meta-review score of 4/5 and will be committed to the ACL
conference. For transparency, we have added that paper to
https://anonymous.4open.science/r/LLM Verifier-403B.


https://anonymous.4open.science/r/LLMVerifier-403B

Question: Is Lisa fond of chocolate?

LLM

Context: If someone likes bread, then they like chocolate or cheese. Anyone who likes eating tomatoes
hates even the idea of cheese. Lisa is the biggest tomato lover I know, but she also is a fan of bread.

yes

LLM with Chain-of-Thought:

Therefore, Lisa likes chocolate or cheese.

VANESSA symbolic:

Let’s think step by step: Lisa is the biggest tomato lover I know, but she also is a fan of bread.
Someone who likes bread will like either chocolate or cheese.

Since she loves tomatoes, she hates the very idea of cheese. Therefore, Lisa likes chocolate

Cannot deduce Lisa_is_fond_of_chocolate

VANESSA neuro-symbolic:

1. Pattern “Everyone...” applied to first sentence: Vx : z_likes_bread = (z_like_chocolate V x_like_cheese)
2. 1 instantiated with Lisa: Lisa_likes_bread = (Lisa_like_chocolate V Lisa_like_cheese)
3. Translation of third sentence: Lisa_is_the_biggest_tomato_lover_I_know V Lisa_is_a_fan_of_bread

OO NN AW~

. Or-elimination from 2 and 4: Lisa_likes_chocolate

yes

. Pattern “Everyone...” applied to first sentence: Vz : z_likes_bread = (z_like_chocolate V z_like_cheese)
. 1 instantiated with Lisa: Lisa_likes_bread = (Lisa_like_chocolate V Lisa_like_cheese)

. Translation of third sentence: Lisa_is_the_biggest_tomato_lover_I_know V Lisa_is_a_fan_of_bread
. Textual entailment Lisa_is_a_fan_of_bread > Lisa_likes_bread

Modus Ponens from 3 and 4: Lisa_like_chocolate V Lisa_like_cheese

. Textual entailment Lisa_is_the_biggest_tomato_lover_I_know > Lisa_likes_eating_tomatoes

. Translation and instantiation of second sentence: Lisa_likes_eating_tomatoes = Lisa_hates_even_the_idea_of_cheese
. Modus Ponens from 6 and 7: Lisa_hates_even_the_idea_of_cheese

10. Textual Entailment Lisa_likes_chocolate > Lisa_is_fond_of_chocolate

Figure 1: Illustration of reasoning-based question answering (fictional example)

2 Related Work

LLMs have been used extensively for all kinds of
reasoning problems. Chain-of-Thought prompt-
ing (Wei et al., 2022) has further increased the
model performance, while giving the user access
to a proof. However, the whole reasoning still re-
lies on the LLLM, which can hallucinate and make
formal errors. For this reason, several works have
investigated neuro-symbolic methods that use exter-
nal tools such as calculators or knowledge bases in
combination with LLMs, increasing performance
on a variety of tasks (Wang et al., 2023; Fang et al.,
2024; Ge et al., 2025). For logical reasoning on text,
the most common approach has been to make an
LLM parse the input into a machine-readable for-
mat such as Prolog (Lee and Hwang, 2024; Boraz-
janizadeh and Piantadosi, 2024; Yang et al., 2023)
or First-Order Logic (Olausson et al., 2023), and
perform reasoning on these structures with theo-
rem provers. However, the parsing into a logical
formalism is a black box step: if we don’t trust the
LLM on formal reasoning in a Chain-of-Thought,
there is no reason to trust it on the translation to

formal logic.

Our work proposes a fully symbolic and trans-
parent reasoning instead. To increase recall, our
method can be combined with an LLM, but only
for Natural Language Inference (NLI). Thereby,
the area of distrust is reduced to a single atomic
task, on which LLMs usually perform extremely
well. In addition, NLI is usually trivial to verify
manually; in Figure 1 it amounts to checking if
“Lisa likes chocolate” contradicts “Lisa is fond of
chocolate”.

3 VANESSA

VANESSA was introduced in our prior work as
a method to verify the reasoning in a chain-
of-thought of a language model. The input to
VANESSA is a context, a boolean question, and a
chain-of-thought that consists of reasoning steps.
Each reasoning step consists of premises and a
conclusion. VANESSA then checks every single
reasoning step and outputs “Correct” iff every step
is correct and every premise is grounded in the
context or in previous conclusions.




In the present work, we adapt VANESSA to an-
swer the question right away, without a given chain-
of-thought. The input to our method is a context,
consisting of rules and facts in natural language,
and a boolean question. The question is to be an-
swered under the Open World Assumption, mean-
ing there are three possible answers: “Yes”, “No”
and “Unknown” (where the latter is given when
the context does not allow drawing any conclusion
about the question with certainty). We transform
this input into a pseudo-reasoning step, which has
the entire context as premises, and the question (in
the form of an affirmative sentence) as the conclu-
sion. Then our adapted VANESSA tries to validate
the reasoning step. If this succeeds, the answer to
the question is “yes”. If it fails, our method tries to
validate the negation of the conclusion. If that suc-
ceeds, the answer is “no”. Otherwise the answer is
“unknown”. When VANESSA validates a reason-
ing step successfully, it automatically constructs a
proof tree, which we can show as an explanation
of the answer.

We now briefly recap how VANESSA validates
a reasoning step. The method proceeds in three
phases: a shallow parsing of the context and the
question (explained in Section 3.1); an augmenta-
tion of the logical forms through NLI (used exclu-
sively in the neuro-symbolic variant of VANESSA,
see Section 3.2); and symbolic reasoning (Section
3.3).

3.1 Logic Transformation.

The purpose of the first phase is to transform every
sentence from the input into a logical form, with
operators linking independent and grammatically
correct atomic sentences. We perform co-reference
resolution (with LingMess Otmazgin et al., 2023)
on the whole input, and then constituency parsing
(Kitaev et al., 2019) on each sentence. Each tree is
then recursively transformed using tree regular ex-
pressions (adapted from Graphene (Niklaus et al.,
2016)). Some patterns specifically aim at detecting
universal quantification in the sentence.This strat-
egy allows us to ensure that every resulting tree
is a well-formed sentence, and keeps the syntax
and semantics of the sentence intact. For example,
“Alex plays football and eats pasta” is transformed
into Alex plays football A Alex eats pasta.

In the end, all universal quantifications are in-
stantiated with definite noun phrases from the
premises and conclusion.

3.2 Natural Language Inference

The previous phase has transformed the context
into a set of atomic sentences linked by operators.
These sentences are replaced by identifiers to feed
them into a reasoner. The problem is that the rea-
soner cannot see semantic relationships between
sentences such as “Lisa hates chocolate” (which
will become one identifier, say A), and “Lisa loves
chocolate” (which will be another identifier, say B).
Indeed, the purely symbolic variant of VANESSA
can see equivalences between sentences only if they
are identical (and hence receive the same identifier).
The neuro-symbolic variant of VANESSA, in con-
trast, applies Natural Language Inference (NLI)
on pairs of atomic statements from the premises
and the conclusion. If the NLI module outputs an
entailment between A and B, we add A = B to
our set of formulas (and A = —B if it outputs
a contradiction). As in Helwe et al. (2022), we
write A > B for A entails B, and A » B for A
contradicts B. Performing NLI on pairs of atomic
statements makes the task easier for the model than
having to process several sentences at once, and
pushes the bigger part of reasoning to the symbolic
prover. Testing all combinations of atomic state-
ments would be both computationally expensive
and susceptible to larger errors (as NLI is not 100%
reliable). For this reason, we designed a strategy
for choosing the statements to pair that reduces
the number of pairs as much as possible while still
covering all interesting cases.

3.3 Natural Deduction

The final phase of VANESSA aims to deduce the
conclusion from the formulas given by the context
and those generated during the NLI phase. We built
a Natural Deduction Solver (Gentzen, 1935) to this
end, which performs a bidirectional search (Pol-
lock, 1999). This method allows the search to pri-
oritize “easy” deductions and restrains the search
space to elements that will be directly useful to
reach the final objective. Natural Deduction allows
us to choose the deduction rules we want to apply.
Most notably, we can exclude the rule of material
implication, which can lead to counter-intuitive rea-
sonings. The reader is invited to find more details
in our original work on VANESSA.

4 Experiments

We test our method with several datasets. Each
dataset contains instances of the form (C, @, O, A),



where C' is the context, () is a boolean question, O
the set of answer options (which is always “True”,
“False”, and “Unknown”), and A € O is the ground-
truth answer. The information needed to answer
the question () is present in the context C', or can
be derived through deductive reasoning to arrive at
the correct answer A.

4.1 Datasets

We evaluate our method on several logical
reasoning-based question answering datasets:
ProofWriter, FOLIO, ProntoQA and LogicBench.
ProofWriter (Tafjord et al., 2021) is a question
answering dataset that contains proofs with inter-
mediate steps. This dataset was generated synthet-
ically using small ontologies, and hence contains
short and simple sentences with a limited vocab-
ulary. We used 165 question instances from the
“Depth 5, Open World Assumption” DEV set.
ProntoQA (Saparov and He, 2023) contains proofs
with intermediate reasoning steps for each ques-
tion. It was also generated using hierarchical on-
tologies, but uses more diverse and complex rea-
soning patterns than ProofWriter. We generated
positive and negative QA instances using the 100
first instances of the 4-hop Composed Random set
from ProntoQA-OOD (Saparov et al., 2023), which
has the particularity of using fictional words (e.g.
“zumpuses”).

FOLIO (Han et al., 2022) is a reasoning-based
question answering dataset containing a wide array
of problems and reasoning patterns. While the
previous two datasets are restricted in their syntax,
FOLIO contains sentences with a large variation
in formulations, words, and entities. It is based on
real-life instances and examples.

LogicBench (Parmar et al., 2024) is a deductive
question answering dataset that systematically cov-
ers a large array of reasoning patterns. It contains
single-step reasoning problems, which have been
rephrased into natural language by an LLM, en-
suring a large syntactic diversity. We used the
propositional logic Hypothetical Syllogism, Dis-
junctive Syllogism, Constructive Dilemma, De-
structive Dilemma, and Bidirectional Dilemma sub-
sets. Contraposition and Material Implication were
not considered because they are concerned with
formal logic rather than natural language reasoning.
The Modus Tollens subset was excluded because
manual inspection showed that the reformulation
by the LLM lead to contradictions between the con-

text and the answer. The original dataset does not
consider the Open World Assumption, and thus
makes no distinction between “False” and “Un-
known”. Hence we manually relabeled negative
ground truths as either “False” or “Uncertain”, and
subsampled the datasets to achieve a balance be-
tween the possible answers.

4.2 Competitors

We compare our approach with several other neural
and neuro-symbolic methods.

Direct LLM. We ask a language model directly
for the answer to the question given the context.
This method is a black-box method. We used two
models that were few-shot prompted for the task:
Ministral (8B) and LLaMa3-8B-Instruct.

CoT LLM. We ask the same language models to
answer the question by a chain-of-thought. This
method is more transparent, as it gives a proof.
However, there is no guarantee that this chain is
correct, which still makes this method black-box.
LINC. The LINC framework (Olausson et al.,
2023) transforms each instance to first-order logic
by help of an LLM, and then verifies the conclu-
sion using a formal theorem prover (Olausson et al.,
2023; Pan et al., 2023). This method is more trans-
parent than a direct LLM answer, although the
transformation to first order logic is still opaque.
We consider this method gray-box. The original
paper uses GPT 3.5-turbo in its experiments, which
we replaced with the same Open Source models as
before, making the results easier to reproduce.
VANESSA neuro-symbolic. This method is com-
pletely transparent up to the natural language in-
ference, which makes it grey-box. We used once
again the same LL.aMa3 and Ministral models.
VANESSA symbolic. This method is completely
transparent.

4.3 Results

Table 1 shows the performance of the different ap-
proaches with LLaMa 3 on all datasets (the results
with Ministral are in Appendix A and do not dif-
fer much). The symbolic VANESSA performs as
expected: Whenever it delivers results, these con-
sistently have the highest precision, notably reach-
ing best performance on ProofWriter. However,
the method falls behind on recall because of its
inability to deal with phrase variations. On the
LogicBench datasets, this problem goes so far that
the method is unable to deliver a verdict at all, and
always says “unknown” — which gives an accuracy



of 50% on subsets where half the ground truth la-
bels are “unknown”. If we look at the gray-box
approaches, the neuro-symbolic VANESSA always
has a better accuracy than LINC, with only one ex-
ception. On half of the datasets, VANESSA beats
even the black-box approaches — a feat that LINC
does not achieve. Among these pproaches, the CoT
approach has a better accuracy that the Direct ap-
proach, as one might expect, albeit only on 5 out
of the 8 datasets.

Our experiments thus show that symbolic and
neuro-symbolic methods can compete with black-
box models in terms of accuracy, and that the
neuro-symbolic VANESSA is generally the best-
performing gray-box model.

5 Demonstration

VANESSA: Neuro-Symbolic Logical Reasoning

Premises

If someone likes bread, then they like chocolate or cheese.
Anyone who likes eating tomatoes hates even the
Lisa is the biggest tomato lover I know, but she also is a fan of bread.

idea of cheese.

Conclusion

Lisa is fond of chocolate.

Presets
Example 1 v

NLI Model
Symbolic v

Submit \

Figure 2: Welcome page of our Web interface

A demonstration of our system is available at
https://vanessa.r2.enst.fr. Figure 2 shows
the home page, which invites the user to input
premises and a conclusion for a logical reason-
ing problem. The user can then choose to run
VANESSA in the symbolic mode, or in the neuro-
symbolic mode. The latter relies on models that
require at least 20GB of VRAM to run, and so we
cannot deploy them in the online interface. Hence,
the neuro-symbolic mode of VANESSA is avail-
able only in the hands-on version of our demo.

When VANESSA finds a solution to the reason-
ing problem, the interface shows the Natural De-
duction proof in the form of an interactive directed
acyclic graph (Figure 3). This graph shows which
statements entail which other statements (in gray
arrows), and which statements contribute to the log-
ical deduction of which other statements (in green
arrows). We also show the parsed input sentences,
the detected entailments, and the linearized proof
in textual form (Figure 4). This allows users to

Accuracy  Prec Rec F1
ProofWriter
*x VANESSA symb. 88.27 97.56 83.33 89.89
VANESSA neuro 6590 63.03 78.12 69.77
LINC 7355 9452 71.88 81.66
CoT 40.19
Direct 24.83
ProntoQA
VANESSA symb. 39.01 96.77 23.62 3797
*x VANESSA neuro  84.18 85.03 98.43 91.24
LINC 6587 85.09 76.38 80.5
CoT
Direct
FOLIO
VANESSA symb.  36.05 100.0 2.96 5.75
* VANESSA neuro  49.52  59.14 40.74 48.25
LINC 34.12 86.84 2444 38.14
CoT
Direct
LogicBench HS
VANESSA symb.  50.00 X X X
VANESSA neuro  46.42 40.0 150 21.82
*LINC 54.77 61.54 40.0 48.49
58.35
50.00
LogicBench DS
VANESSA symb. 0.00 X X X
* VANESSA neuro  54.56 88.0 550 67.69
LINC 2947 84.62 27.5 4151
CoT
Direct
LogicBench CD
VANESSA symb.  50.00 X X X
% VANESSA neuro  56.84 56.0 70.0 62.22
LINC 52.28 75.0 45.0 56.25

CoT

Direct

LogicBench DD

66.67
63.16

VANESSA symb.  50.00 X X X
+* VANESSA neuro  52.28 50.0 45.0 47.37
LINC 31.75 31.25 25.0 27.78

LogicBench BD

50.00

50.00

VANESSA symb.  50.00 X X X
* VANESSA neuro  52.28 55.56 50.0 52.63
LINC 2491 40.0 20.0 26.67

CoT

Direct

59.12
63.69

57.69
62.5

Table 1: Accuracy, as well as micro-averaged precision,
recall, and F1 for the positive and negative classes. % for
best whitebox/graybox approach. x* for whitebox/gray-
box approach that beats even blackbox approaches. All
approaches run with Llama3.


https://vanessa.r2.enst.fr

X likes bread .
— (X like chocolate . v X like cheese .)

%sali:e cho&e .

) V Lisa like cheese .
Akes bread .

| Lisa also is a fan of bread .

Lisa is the biggest tomato lover | know .
A Lisa also is a fan of bread .

N

Lisa is the biggest tomato lover | know .

Lisa is a person who Iikekﬁng tomatoes . /

X is a person who likes eating tomatoes .
— X hates even the idea of cheese .

Lisa is fond of chocolate .

/LiQ:e chocolate .

B Lis/a(like cheese .

Lisa hates even the idea of cheese .

Figure 3: Proof graph for our running example

VANESSA Prediction: True

Premises

If someone likes bread, then they like chocolate or cheese.
X likes bread — (X like chocolate v X like cheese)
Logic Version: ((8—(9v10))u(11—(12v13)))

Anyone who likes eating tomatoes hates even the idea of cheese.
Xis a person who likes eating tomatoes — X hates even the idea of
cheese
Logic Version: ((14—15)u(16—17))

Lisa is the biggest tomato lover | know, but she also is a fan of
bread.
Lisa is the biggest tomato lover | know A Lisa also is a fan of bread
Logic Version: (5A6)

Instances: 'the biggest tomato lover | know’, 'Lisa’
Conclusion

Lisa is fond of chocolate.
Lisa is fond of chocolate
Logic Version: 7

Proof

1. 12D>7 (ent)
2.

((8—(9v10))u(11(12v13)))

(ax)

3. 115(12v13) (re 2)

4.6>11 (ent)
5. (5A6) (ax)
6.6(re5)

7.1 (—e 4, 6)
8.12v13 (—e3,7)
9. 171>(~13) (ent)

10. ((14—-15)u(16—17)) (ax)

11. 16517 (Ae 10)
12. 5116 (ent)
13.5(ne 5)
14.16 (—e 12, 13)
15.17 (—e 11, 14)
16. 13 (—e 9, 15)
17.12 (ve2 8, 16)
18.7 (—e 1,17)

Correspondences

0: X likes bread .

1: X like chocolate .

2: X like cheese .

3: Xis a person who likes eating tomatoes .

4: X hates even the idea of cheese .

5: Lisa is the biggest tomato lover | know .

6: Lisa also is a fan of bread .

7: Lisa is fond of chocolate .

8: the biggest tomato lover | know likes bread .
9: the biggest tomato lover | know like chocolate .
10: the biggest tomato lover | know like cheese .
11: Lisa likes bread .

12: Lisa like chocolate .

13: Lisa like cheese .

14: the biggest tomato lover | know is a person who likes eating
tomatoes .

15: the biggest tomato lover | know hates even the idea of cheese .
16: Lisa is a person who likes eating tomatoes .
17: Lisa hates even the idea of cheese .

Figure 4: Linearization and output details

trace the reasoning steps in a transparent way. In
case of an error, users can see whether the error
comes from the parsing or the NLI.

During the demo, users can start by playing
around with some of the preset examples that the
GUI offers from several benchmarks. Users can
then modify the examples, for example by chang-
ing the phrasing (to see if the system is robust),
or by adding negations or different conclusions.
Finally, they can also submit their own reasoning
problems and see if the system can give the correct
response.

6 Conclusion

We have presented an adaptation of the VANESSA
method that can be used to answer natural language

questions — either by fully symbolic, transparent
reasoning, or by neuro-symbolic reasoning. Our
experiments on a variety of benchmarks show that
the symbolic variant can achieve a high precision
at a somewhat reduced recall. The neuro-symbolic
variant, however, performs on par with black-box
models or even better, while still being more trans-
parent. In a hands-on demo, users can play with the
system, submit their own logical riddles, and try to
trick our system. We hope that our work paves the
way for the development of more explainable and
more transparent logic reasoning models.

All our code and data is available for re-
view at https://anonymous.4open.science/r/
LLMVerifier-403B, and the video at https://
youtu.be/eWSop2Mayow.
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A Full Results

Dataset Method Model Accuracy  Prec Rec F1
ProofWriter VANESSA  Symbolic 88.27 97.56 83.33 89.89
LLaMa3 6590 63.03 78.12 69.77

Ministral 68.25 66.02 70.83 68.34

LINC LLaMa3 7355 9452 7188 81.66

Ministral 8238 820 8542 83.68

CoT LLaMa3 4529 40.19 4479 4237

Ministral 50.59 46.55 56.25 50.94

Direct LLaMa3 27.04 2483 3854 302

Ministral 3234 3193 5521 4046

ProntoQA VANESSA  Symbolic 39.01 96.77 23.62 37.97
LLaMa3 84.18 85.03 9843 91.24

Ministral 95.78 97.64 97.64 97.64

LINC LLaMa3 6587 85.09 76.38  80.5

Ministral 4451 78.16 53.54 63.55

CoT LLaMa3 68.92 7448 8504 79.41

Ministral 7075 7794 8346 80.61

Direct LLaMa3 59.16 5938 748  66.2

Ministral 4512 450 56.69 50.17

FOLIO VANESSA  Symbolic 36.05 100.0 296 5.75
LLaMa3 49.52 59.14 40.74 4825

Ministral 4737 76.60 2647 39.34

LINC LLaMa3 3412 86.84 2444 38.14

Ministral 39.90 89.36 31.11 46.15

CoT LLaMa3 5577 57.06 7481 64.74

Ministral 56.74 56.65 7259 63.64

Direct LLaMa3 5592 533 7185 612

Ministral 46.15 4554 68.15 546

LogicBench HS  VANESSA  Symbolic 50.00 X X X
LLaMa3 46.42 400 150 21.82

Ministral 4552 3333 100 15.38

LINC LLaMa3 5477 61.54 40.0 48.49

Ministral 5477 80.0 30.0 43.64

CoT LLaMa3 5835 5556 875 67.96

Ministral 8459 79.17 950 86.37

Direct LLaMa3 50.00 X X X

Ministral 4404 4375 875 5833

LogicBench DS~ VANESSA  Symbolic 0.00 X X X
LLaMa3 5456 88.0 550 67.69

Ministral 4772 9048 475 623

LINC LLaMa3 29.47 84.62 275 4151

Ministral 8.94 100.0 50 952

CoT LLaMa3 6597  87.1 67.5 76.06

Ministral 7281 81.08 750 77.92

Direct LLaMa3 31.75 3871 300 33.8

Ministral 4772 475 415 415

LogicBench CD  VANESSA  Symbolic 50.00 X X X
LLaMa3 56.84 56.0 700 62.22

Ministral 50.00 X X X

LINC LLaMa3 5228 750 450 5625

Ministral 4772 70.0 350 46.67

CoT LLaMa3 5228 5135 950 66.67

Ministral 59.12 5588 95.0 70.37

Direct LLaMa3 50.00 48.65 90.0 63.16

Ministral 38.60 375 750 50.0

LogicBench DD VANESSA  Symbolic 50.00 X X X
LLaMa3 5228 500 450 47.37

Ministral 56.84 63.64 350 45.16

LINC LLaMa3 3175 3125 250 27.78

Ministral 3860 500 350 41.18

CoT LLaMa3 50.00 47.83 55.0 51.17

Ministral 5228 500 80.0 61.54

Direct LLaMa3 50.00 50.0 70.0 58.33

Ministral 0.00 X X X

LogicBench BD VANESSA Symbolic 50.00 X X X
LLaMa3 5228 5556 500 52.63

Ministral 59.12 6923 450 54.55

LINC LLaMa3 2491 400 200 26.67

Ministral 2491 375 150 2143

CoT LLaMa3 59.12 57.69 750 6522

Ministral 50.00 48.15 65.0 5532

Direct LLaMa3 63.69 625 750 68.18

Ministral 2263  20.0 40.0 26.67

Table 2: Accuracy, as well as Micro-averaged Precision,
Recall, and F1 for the positive and negative classes.
The small line divides grey-box and black-box models.
Green: best F1 overall. Cyan: best F1 for the other
category of models. Bold: best accuracy. Underlined:
best accuracy for the other side.
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