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Abstract
Large Language Models can answer natural001
language questions with reasoning, but they002
remain black boxes. In this paper, we pro-003
pose to adapt VANESSA, a method for chain-004
of-thought verification, to the task of ques-005
tion answering. The result is a fully symbolic006
and transparent method for answering natu-007
ral language questions with logical deduction.008
VANESSA can deliver a formal proof of cor-009
rectness of the answer by a logical reasoner.010
Our experiments across a variety of datasets011
show that this method yields high precision,012
but suffers from low recall due to phrasing013
differences. The neuro-symbolic variant of014
VANESSA, which allows for textual entailment015
performed by a black box model, however, is016
competitive with the state of the art.017

1 Introduction018

Reasoning-based question answering is the task of019

answering a yes/no question on a paragraph of text020

by help of logical deduction. This means that the021

answer cannot just be found in the text, but has to022

be deduced in one or more logical reasoning steps023

from the information given in the text (Figure 1).024

This task is of interest not just because it allows025

answering complex questions, but also because it026

allows gauging whether a QA system goes beyond027

surface-level comprehension of the text. Large028

Language Models (LLMs) are relatively good at029

such reasoning tasks. However, they remain black030

boxes: If an LLM says “yes” (or “no”), we have031

no guarantee that this answer is correct. The only032

way to verify the answer is to compute the answer033

ourselves and to compare it to the LLM answer034

– which defies the purpose of using an LLM in035

the first place. The picture is slightly different036

with techniques such as Chain-of-Thought: here,037

the model can show its reasoning explicitly step038

by step. However, each of these steps might still039

be incorrect. Interestingly, the steps can be incor-040

rect even if the answer is correct, thus making the041

answer right for the wrong reasons. Indeed, our 042

previous work1 shows that LLMs frequently pro- 043

duce hallucinations, omissions, or errors in their 044

reasoning steps. 045

Our previous work has shown how these rea- 046

soning steps can be verified in a symbolic manner, 047

by a method we called VANESSA. For each rea- 048

soning step in the Chain-of-Thought, VANESSA 049

parses sentences into a syntax tree, applies a set of 050

symbolic tree transformations, and verifies the con- 051

clusion by help of a symbolic logical reasoner. In 052

a neuro-symbolic variant, VANESSA uses Natural 053

Language Inference (NLI) to bridge differences in 054

phrasing. 055

In this paper, we show that VANESSA can be 056

adapted to answer the initial question right away, 057

instead of verifying the reasoning steps produced 058

by an LLM. For this purpose, VANESSA has to 059

be adapted to not only prove if the conclusion is 060

correct, but also to prove that it is incorrect (in 061

which case the output answer will be “no”). Such 062

answers are accompanied by a set of transparent 063

steps that lead from the input text to the answer, and 064

come with a formal proof of correctness. Figure 1 065

shows an example. Note how the neuro-symbolic 066

variant of VANESSA can understand that “Lisa 067

likes chocolate” entails “Lisa is fond of chocolate”, 068

and thereby answer the question correctly. 069

Our experiments on several logical QA bench- 070

marks and with black box competitors as well as 071

neuro-symbolic competitors show that (1) the sym- 072

bolic VANESSA consistently has the highest pre- 073

cision across all datasets and competitors when it 074

finds a proof and (2) in its neuro-symbolic variant, 075

VANESSA is competitive in overall performance 076

with purely neural methods, while at the same time 077

delivering a formal proof tree. 078

1This previous work has been submitted to the ACL
Rolling Review December 2024 Cycle, where it has received
a meta-review score of 4/5 and will be committed to the ACL
conference. For transparency, we have added that paper to
https://anonymous.4open.science/r/LLMVerifier-403B.
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Context: If someone likes bread, then they like chocolate or cheese. Anyone who likes eating tomatoes
hates even the idea of cheese. Lisa is the biggest tomato lover I know, but she also is a fan of bread.
Question: Is Lisa fond of chocolate?

LLM

yes

LLM with Chain-of-Thought:

Let’s think step by step: Lisa is the biggest tomato lover I know, but she also is a fan of bread.
Someone who likes bread will like either chocolate or cheese.
Therefore, Lisa likes chocolate or cheese.
Since she loves tomatoes, she hates the very idea of cheese. Therefore, Lisa likes chocolate

VANESSA symbolic:

1. Pattern “Everyone...” applied to first sentence: ∀x : x_likes_bread ⇒ (x_like_chocolate ∨ x_like_cheese)
2. 1 instantiated with Lisa: Lisa_likes_bread ⇒ (Lisa_like_chocolate ∨ Lisa_like_cheese)
3. Translation of third sentence: Lisa_is_the_biggest_tomato_lover_I_know ∨ Lisa_is_a_fan_of_bread
Cannot deduce Lisa_is_fond_of_chocolate

VANESSA neuro-symbolic:

1. Pattern “Everyone...” applied to first sentence: ∀x : x_likes_bread ⇒ (x_like_chocolate ∨ x_like_cheese)
2. 1 instantiated with Lisa: Lisa_likes_bread ⇒ (Lisa_like_chocolate ∨ Lisa_like_cheese)
3. Translation of third sentence: Lisa_is_the_biggest_tomato_lover_I_know ∨ Lisa_is_a_fan_of_bread
4. Textual entailment Lisa_is_a_fan_of_bread ▷ Lisa_likes_bread
5. Modus Ponens from 3 and 4: Lisa_like_chocolate ∨ Lisa_like_cheese
6. Textual entailment Lisa_is_the_biggest_tomato_lover_I_know ▷ Lisa_likes_eating_tomatoes
7. Translation and instantiation of second sentence: Lisa_likes_eating_tomatoes ⇒ Lisa_hates_even_the_idea_of_cheese
8. Modus Ponens from 6 and 7: Lisa_hates_even_the_idea_of_cheese
9. Or-elimination from 2 and 4: Lisa_likes_chocolate
10. Textual Entailment Lisa_likes_chocolate ▷ Lisa_is_fond_of_chocolate
yes

Figure 1: Illustration of reasoning-based question answering (fictional example)

2 Related Work079

LLMs have been used extensively for all kinds of080

reasoning problems. Chain-of-Thought prompt-081

ing (Wei et al., 2022) has further increased the082

model performance, while giving the user access083

to a proof. However, the whole reasoning still re-084

lies on the LLM, which can hallucinate and make085

formal errors. For this reason, several works have086

investigated neuro-symbolic methods that use exter-087

nal tools such as calculators or knowledge bases in088

combination with LLMs, increasing performance089

on a variety of tasks (Wang et al., 2023; Fang et al.,090

2024; Ge et al., 2025). For logical reasoning on text,091

the most common approach has been to make an092

LLM parse the input into a machine-readable for-093

mat such as Prolog (Lee and Hwang, 2024; Boraz-094

janizadeh and Piantadosi, 2024; Yang et al., 2023)095

or First-Order Logic (Olausson et al., 2023), and096

perform reasoning on these structures with theo-097

rem provers. However, the parsing into a logical098

formalism is a black box step: if we don’t trust the099

LLM on formal reasoning in a Chain-of-Thought,100

there is no reason to trust it on the translation to101

formal logic. 102

Our work proposes a fully symbolic and trans- 103

parent reasoning instead. To increase recall, our 104

method can be combined with an LLM, but only 105

for Natural Language Inference (NLI). Thereby, 106

the area of distrust is reduced to a single atomic 107

task, on which LLMs usually perform extremely 108

well. In addition, NLI is usually trivial to verify 109

manually; in Figure 1 it amounts to checking if 110

“Lisa likes chocolate” contradicts “Lisa is fond of 111

chocolate”. 112

3 VANESSA 113

VANESSA was introduced in our prior work as 114

a method to verify the reasoning in a chain- 115

of-thought of a language model. The input to 116

VANESSA is a context, a boolean question, and a 117

chain-of-thought that consists of reasoning steps. 118

Each reasoning step consists of premises and a 119

conclusion. VANESSA then checks every single 120

reasoning step and outputs “Correct” iff every step 121

is correct and every premise is grounded in the 122

context or in previous conclusions. 123
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In the present work, we adapt VANESSA to an-124

swer the question right away, without a given chain-125

of-thought. The input to our method is a context,126

consisting of rules and facts in natural language,127

and a boolean question. The question is to be an-128

swered under the Open World Assumption, mean-129

ing there are three possible answers: “Yes”, “No”130

and “Unknown” (where the latter is given when131

the context does not allow drawing any conclusion132

about the question with certainty). We transform133

this input into a pseudo-reasoning step, which has134

the entire context as premises, and the question (in135

the form of an affirmative sentence) as the conclu-136

sion. Then our adapted VANESSA tries to validate137

the reasoning step. If this succeeds, the answer to138

the question is “yes”. If it fails, our method tries to139

validate the negation of the conclusion. If that suc-140

ceeds, the answer is “no”. Otherwise the answer is141

“unknown”. When VANESSA validates a reason-142

ing step successfully, it automatically constructs a143

proof tree, which we can show as an explanation144

of the answer.145

We now briefly recap how VANESSA validates146

a reasoning step. The method proceeds in three147

phases: a shallow parsing of the context and the148

question (explained in Section 3.1); an augmenta-149

tion of the logical forms through NLI (used exclu-150

sively in the neuro-symbolic variant of VANESSA,151

see Section 3.2); and symbolic reasoning (Section152

3.3).153

3.1 Logic Transformation.154

The purpose of the first phase is to transform every155

sentence from the input into a logical form, with156

operators linking independent and grammatically157

correct atomic sentences. We perform co-reference158

resolution (with LingMess Otmazgin et al., 2023)159

on the whole input, and then constituency parsing160

(Kitaev et al., 2019) on each sentence. Each tree is161

then recursively transformed using tree regular ex-162

pressions (adapted from Graphene (Niklaus et al.,163

2016)). Some patterns specifically aim at detecting164

universal quantification in the sentence.This strat-165

egy allows us to ensure that every resulting tree166

is a well-formed sentence, and keeps the syntax167

and semantics of the sentence intact. For example,168

“Alex plays football and eats pasta” is transformed169

into Alex plays football ∧ Alex eats pasta.170

In the end, all universal quantifications are in-171

stantiated with definite noun phrases from the172

premises and conclusion.173

3.2 Natural Language Inference 174

The previous phase has transformed the context 175

into a set of atomic sentences linked by operators. 176

These sentences are replaced by identifiers to feed 177

them into a reasoner. The problem is that the rea- 178

soner cannot see semantic relationships between 179

sentences such as “Lisa hates chocolate” (which 180

will become one identifier, say A), and “Lisa loves 181

chocolate” (which will be another identifier, say B). 182

Indeed, the purely symbolic variant of VANESSA 183

can see equivalences between sentences only if they 184

are identical (and hence receive the same identifier). 185

The neuro-symbolic variant of VANESSA, in con- 186

trast, applies Natural Language Inference (NLI) 187

on pairs of atomic statements from the premises 188

and the conclusion. If the NLI module outputs an 189

entailment between A and B, we add A ⇒ B to 190

our set of formulas (and A ⇒ ¬B if it outputs 191

a contradiction). As in Helwe et al. (2022), we 192

write A ▷ B for A entails B, and A ▶ B for A 193

contradicts B. Performing NLI on pairs of atomic 194

statements makes the task easier for the model than 195

having to process several sentences at once, and 196

pushes the bigger part of reasoning to the symbolic 197

prover. Testing all combinations of atomic state- 198

ments would be both computationally expensive 199

and susceptible to larger errors (as NLI is not 100% 200

reliable). For this reason, we designed a strategy 201

for choosing the statements to pair that reduces 202

the number of pairs as much as possible while still 203

covering all interesting cases. 204

3.3 Natural Deduction 205

The final phase of VANESSA aims to deduce the 206

conclusion from the formulas given by the context 207

and those generated during the NLI phase. We built 208

a Natural Deduction Solver (Gentzen, 1935) to this 209

end, which performs a bidirectional search (Pol- 210

lock, 1999). This method allows the search to pri- 211

oritize “easy” deductions and restrains the search 212

space to elements that will be directly useful to 213

reach the final objective. Natural Deduction allows 214

us to choose the deduction rules we want to apply. 215

Most notably, we can exclude the rule of material 216

implication, which can lead to counter-intuitive rea- 217

sonings. The reader is invited to find more details 218

in our original work on VANESSA. 219

4 Experiments 220

We test our method with several datasets. Each 221

dataset contains instances of the form (C,Q,O,A), 222
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where C is the context, Q is a boolean question, O223

the set of answer options (which is always “True”,224

“False”, and “Unknown”), and A ∈ O is the ground-225

truth answer. The information needed to answer226

the question Q is present in the context C, or can227

be derived through deductive reasoning to arrive at228

the correct answer A.229

4.1 Datasets230

We evaluate our method on several logical231

reasoning-based question answering datasets:232

ProofWriter, FOLIO, ProntoQA and LogicBench.233

ProofWriter (Tafjord et al., 2021) is a question234

answering dataset that contains proofs with inter-235

mediate steps. This dataset was generated synthet-236

ically using small ontologies, and hence contains237

short and simple sentences with a limited vocab-238

ulary. We used 165 question instances from the239

“Depth 5, Open World Assumption” DEV set.240

ProntoQA (Saparov and He, 2023) contains proofs241

with intermediate reasoning steps for each ques-242

tion. It was also generated using hierarchical on-243

tologies, but uses more diverse and complex rea-244

soning patterns than ProofWriter. We generated245

positive and negative QA instances using the 100246

first instances of the 4-hop Composed Random set247

from ProntoQA-OOD (Saparov et al., 2023), which248

has the particularity of using fictional words (e.g.249

“zumpuses”).250

FOLIO (Han et al., 2022) is a reasoning-based251

question answering dataset containing a wide array252

of problems and reasoning patterns. While the253

previous two datasets are restricted in their syntax,254

FOLIO contains sentences with a large variation255

in formulations, words, and entities. It is based on256

real-life instances and examples.257

LogicBench (Parmar et al., 2024) is a deductive258

question answering dataset that systematically cov-259

ers a large array of reasoning patterns. It contains260

single-step reasoning problems, which have been261

rephrased into natural language by an LLM, en-262

suring a large syntactic diversity. We used the263

propositional logic Hypothetical Syllogism, Dis-264

junctive Syllogism, Constructive Dilemma, De-265

structive Dilemma, and Bidirectional Dilemma sub-266

sets. Contraposition and Material Implication were267

not considered because they are concerned with268

formal logic rather than natural language reasoning.269

The Modus Tollens subset was excluded because270

manual inspection showed that the reformulation271

by the LLM lead to contradictions between the con-272

text and the answer. The original dataset does not 273

consider the Open World Assumption, and thus 274

makes no distinction between “False” and “Un- 275

known”. Hence we manually relabeled negative 276

ground truths as either “False” or “Uncertain”, and 277

subsampled the datasets to achieve a balance be- 278

tween the possible answers. 279

4.2 Competitors 280

We compare our approach with several other neural 281

and neuro-symbolic methods. 282

Direct LLM. We ask a language model directly 283

for the answer to the question given the context. 284

This method is a black-box method. We used two 285

models that were few-shot prompted for the task: 286

Ministral (8B) and LLaMa3-8B-Instruct. 287

CoT LLM. We ask the same language models to 288

answer the question by a chain-of-thought. This 289

method is more transparent, as it gives a proof. 290

However, there is no guarantee that this chain is 291

correct, which still makes this method black-box. 292

LINC. The LINC framework (Olausson et al., 293

2023) transforms each instance to first-order logic 294

by help of an LLM, and then verifies the conclu- 295

sion using a formal theorem prover (Olausson et al., 296

2023; Pan et al., 2023). This method is more trans- 297

parent than a direct LLM answer, although the 298

transformation to first order logic is still opaque. 299

We consider this method gray-box. The original 300

paper uses GPT 3.5-turbo in its experiments, which 301

we replaced with the same Open Source models as 302

before, making the results easier to reproduce. 303

VANESSA neuro-symbolic. This method is com- 304

pletely transparent up to the natural language in- 305

ference, which makes it grey-box. We used once 306

again the same LLaMa3 and Ministral models. 307

VANESSA symbolic. This method is completely 308

transparent. 309

4.3 Results 310

Table 1 shows the performance of the different ap- 311

proaches with LLaMa 3 on all datasets (the results 312

with Ministral are in Appendix A and do not dif- 313

fer much). The symbolic VANESSA performs as 314

expected: Whenever it delivers results, these con- 315

sistently have the highest precision, notably reach- 316

ing best performance on ProofWriter. However, 317

the method falls behind on recall because of its 318

inability to deal with phrase variations. On the 319

LogicBench datasets, this problem goes so far that 320

the method is unable to deliver a verdict at all, and 321

always says “unknown” – which gives an accuracy 322
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of 50% on subsets where half the ground truth la-323

bels are “unknown”. If we look at the gray-box324

approaches, the neuro-symbolic VANESSA always325

has a better accuracy than LINC, with only one ex-326

ception. On half of the datasets, VANESSA beats327

even the black-box approaches – a feat that LINC328

does not achieve. Among these pproaches, the CoT329

approach has a better accuracy that the Direct ap-330

proach, as one might expect, albeit only on 5 out331

of the 8 datasets.332

Our experiments thus show that symbolic and333

neuro-symbolic methods can compete with black-334

box models in terms of accuracy, and that the335

neuro-symbolic VANESSA is generally the best-336

performing gray-box model.337

5 Demonstration338

Figure 2: Welcome page of our Web interface

A demonstration of our system is available at339

https://vanessa.r2.enst.fr. Figure 2 shows340

the home page, which invites the user to input341

premises and a conclusion for a logical reason-342

ing problem. The user can then choose to run343

VANESSA in the symbolic mode, or in the neuro-344

symbolic mode. The latter relies on models that345

require at least 20GB of VRAM to run, and so we346

cannot deploy them in the online interface. Hence,347

the neuro-symbolic mode of VANESSA is avail-348

able only in the hands-on version of our demo.349

When VANESSA finds a solution to the reason-350

ing problem, the interface shows the Natural De-351

duction proof in the form of an interactive directed352

acyclic graph (Figure 3). This graph shows which353

statements entail which other statements (in gray354

arrows), and which statements contribute to the log-355

ical deduction of which other statements (in green356

arrows). We also show the parsed input sentences,357

the detected entailments, and the linearized proof358

in textual form (Figure 4). This allows users to359

Accuracy Prec Rec F1

ProofWriter

⋆⋆ VANESSA symb. 88.27 97.56 83.33 89.89
VANESSA neuro 65.90 63.03 78.12 69.77

LINC 73.55 94.52 71.88 81.66
CoT 45.29 40.19 44.79 42.37

Direct 27.04 24.83 38.54 30.2

ProntoQA

VANESSA symb. 39.01 96.77 23.62 37.97
⋆⋆ VANESSA neuro 84.18 85.03 98.43 91.24

LINC 65.87 85.09 76.38 80.5
CoT 68.92 74.48 85.04 79.41

Direct 59.16 59.38 74.8 66.2

FOLIO

VANESSA symb. 36.05 100.0 2.96 5.75
⋆ VANESSA neuro 49.52 59.14 40.74 48.25

LINC 34.12 86.84 24.44 38.14
CoT 55.77 57.06 74.81 64.74

Direct 55.92 53.3 71.85 61.2

LogicBench HS

VANESSA symb. 50.00 x x x
VANESSA neuro 46.42 40.0 15.0 21.82

⋆ LINC 54.77 61.54 40.0 48.49
CoT 58.35 55.56 87.5 67.96

Direct 50.00 x x x

LogicBench DS

VANESSA symb. 0.00 x x x
⋆ VANESSA neuro 54.56 88.0 55.0 67.69

LINC 29.47 84.62 27.5 41.51
CoT 65.97 87.1 67.5 76.06

Direct 31.75 38.71 30.0 33.8

LogicBench CD

VANESSA symb. 50.00 x x x
⋆⋆ VANESSA neuro 56.84 56.0 70.0 62.22

LINC 52.28 75.0 45.0 56.25
CoT 52.28 51.35 95.0 66.67

Direct 50.00 48.65 90.0 63.16

LogicBench DD

VANESSA symb. 50.00 x x x
⋆⋆ VANESSA neuro 52.28 50.0 45.0 47.37

LINC 31.75 31.25 25.0 27.78
CoT 50.00 47.83 55.0 51.17

Direct 50.00 50.0 70.0 58.33

LogicBench BD

VANESSA symb. 50.00 x x x
⋆ VANESSA neuro 52.28 55.56 50.0 52.63

LINC 24.91 40.0 20.0 26.67
CoT 59.12 57.69 75.0 65.22

Direct 63.69 62.5 75.0 68.18

Table 1: Accuracy, as well as micro-averaged precision,
recall, and F1 for the positive and negative classes. ⋆ for
best whitebox/graybox approach. ⋆⋆ for whitebox/gray-
box approach that beats even blackbox approaches. All
approaches run with Llama3.
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Figure 3: Proof graph for our running example

Figure 4: Linearization and output details

trace the reasoning steps in a transparent way. In360

case of an error, users can see whether the error361

comes from the parsing or the NLI.362

During the demo, users can start by playing363

around with some of the preset examples that the364

GUI offers from several benchmarks. Users can365

then modify the examples, for example by chang-366

ing the phrasing (to see if the system is robust),367

or by adding negations or different conclusions.368

Finally, they can also submit their own reasoning369

problems and see if the system can give the correct370

response.371

6 Conclusion372

We have presented an adaptation of the VANESSA373

method that can be used to answer natural language374

questions – either by fully symbolic, transparent 375

reasoning, or by neuro-symbolic reasoning. Our 376

experiments on a variety of benchmarks show that 377

the symbolic variant can achieve a high precision 378

at a somewhat reduced recall. The neuro-symbolic 379

variant, however, performs on par with black-box 380

models or even better, while still being more trans- 381

parent. In a hands-on demo, users can play with the 382

system, submit their own logical riddles, and try to 383

trick our system. We hope that our work paves the 384

way for the development of more explainable and 385

more transparent logic reasoning models. 386

All our code and data is available for re- 387

view at https://anonymous.4open.science/r/ 388

LLMVerifier-403B, and the video at https:// 389

youtu.be/eWSop2Mayow. 390
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A Full Results500

Dataset Method Model Accuracy Prec Rec F1

ProofWriter VANESSA Symbolic 88.27 97.56 83.33 89.89
LLaMa3 65.90 63.03 78.12 69.77
Ministral 68.25 66.02 70.83 68.34

LINC LLaMa3 73.55 94.52 71.88 81.66
Ministral 82.38 82.0 85.42 83.68

CoT LLaMa3 45.29 40.19 44.79 42.37
Ministral 50.59 46.55 56.25 50.94

Direct LLaMa3 27.04 24.83 38.54 30.2
Ministral 32.34 31.93 55.21 40.46

ProntoQA VANESSA Symbolic 39.01 96.77 23.62 37.97
LLaMa3 84.18 85.03 98.43 91.24
Ministral 95.78 97.64 97.64 97.64

LINC LLaMa3 65.87 85.09 76.38 80.5
Ministral 44.51 78.16 53.54 63.55

CoT LLaMa3 68.92 74.48 85.04 79.41
Ministral 70.75 77.94 83.46 80.61

Direct LLaMa3 59.16 59.38 74.8 66.2
Ministral 45.12 45.0 56.69 50.17

FOLIO VANESSA Symbolic 36.05 100.0 2.96 5.75
LLaMa3 49.52 59.14 40.74 48.25
Ministral 47.37 76.60 26.47 39.34

LINC LLaMa3 34.12 86.84 24.44 38.14
Ministral 39.90 89.36 31.11 46.15

CoT LLaMa3 55.77 57.06 74.81 64.74
Ministral 56.74 56.65 72.59 63.64

Direct LLaMa3 55.92 53.3 71.85 61.2
Ministral 46.15 45.54 68.15 54.6

LogicBench HS VANESSA Symbolic 50.00 x x x
LLaMa3 46.42 40.0 15.0 21.82
Ministral 45.52 33.33 10.0 15.38

LINC LLaMa3 54.77 61.54 40.0 48.49
Ministral 54.77 80.0 30.0 43.64

CoT LLaMa3 58.35 55.56 87.5 67.96
Ministral 84.59 79.17 95.0 86.37

Direct LLaMa3 50.00 x x x
Ministral 44.04 43.75 87.5 58.33

LogicBench DS VANESSA Symbolic 0.00 x x x
LLaMa3 54.56 88.0 55.0 67.69
Ministral 47.72 90.48 47.5 62.3

LINC LLaMa3 29.47 84.62 27.5 41.51
Ministral 8.94 100.0 5.0 9.52

CoT LLaMa3 65.97 87.1 67.5 76.06
Ministral 72.81 81.08 75.0 77.92

Direct LLaMa3 31.75 38.71 30.0 33.8
Ministral 47.72 47.5 47.5 47.5

LogicBench CD VANESSA Symbolic 50.00 x x x
LLaMa3 56.84 56.0 70.0 62.22
Ministral 50.00 x x x

LINC LLaMa3 52.28 75.0 45.0 56.25
Ministral 47.72 70.0 35.0 46.67

CoT LLaMa3 52.28 51.35 95.0 66.67
Ministral 59.12 55.88 95.0 70.37

Direct LLaMa3 50.00 48.65 90.0 63.16
Ministral 38.60 37.5 75.0 50.0

LogicBench DD VANESSA Symbolic 50.00 x x x
LLaMa3 52.28 50.0 45.0 47.37
Ministral 56.84 63.64 35.0 45.16

LINC LLaMa3 31.75 31.25 25.0 27.78
Ministral 38.60 50.0 35.0 41.18

CoT LLaMa3 50.00 47.83 55.0 51.17
Ministral 52.28 50.0 80.0 61.54

Direct LLaMa3 50.00 50.0 70.0 58.33
Ministral 0.00 x x x

LogicBench BD VANESSA Symbolic 50.00 x x x
LLaMa3 52.28 55.56 50.0 52.63
Ministral 59.12 69.23 45.0 54.55

LINC LLaMa3 24.91 40.0 20.0 26.67
Ministral 24.91 37.5 15.0 21.43

CoT LLaMa3 59.12 57.69 75.0 65.22
Ministral 50.00 48.15 65.0 55.32

Direct LLaMa3 63.69 62.5 75.0 68.18
Ministral 22.63 20.0 40.0 26.67

Table 2: Accuracy, as well as Micro-averaged Precision,
Recall, and F1 for the positive and negative classes.
The small line divides grey-box and black-box models.
Green: best F1 overall. Cyan: best F1 for the other
category of models. Bold: best accuracy. Underlined:
best accuracy for the other side.
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